Elevated AKR1C3 expression promotes prostate cancer cell survival and prostate cell-mediated endothelial cell tube formation: implications for prostate cancer progressioan
详细信息    查看全文
  • 作者:Mikhail G Dozmorov (1)
    Joseph T Azzarello (2) (3)
    Jonathan D Wren (1)
    Kar-Ming Fung (2) (4) (5)
    Qing Yang (2)
    Jeffrey S Davis (2)
    Robert E Hurst (2) (6)
    Daniel J Culkin (2)
    Trevor M Penning (7)
    Hsueh-Kung Lin (1) (3) (5)
  • 刊名:BMC Cancer
  • 出版年:2010
  • 出版时间:December 2010
  • 年:2010
  • 卷:10
  • 期:1
  • 全文大小:1489KB
  • 参考文献:1. Jez JM, Flynn TG, Penning TM: A new nomenclature for the aldo-keto reductase superfamily. / Biochem Pharmacol 1997, 54:639鈥?47. CrossRef
    2. Jez JM, Bennett MJ, Schlegel BP, Lewis M, Penning TM: Comparative anatomy of the aldo-keto reductase superfamily. / Biochem J 1997, 326:625鈥?36.
    3. Hara A, Matsuura K, Tamada Y, Sato K, Miyabe Y, Deyashiki Y, Ishida N: Relationship of human liver dihydrodiol dehydrogenases to hepatic bile-acid-binding protein and an oxidoreductase of human colon cells. / Biochem J 1996, 313:373鈥?76.
    4. Dufort I, Soucy P, Labrie F, Luu-The V: Molecular cloning of human type 3 3伪-hydroxysteroid dehydrogenase that differs from 20伪-hydroxysteroid dehydrogenase by seven amino acids. / Biochem Biophy Res Communication 1996, 228:474鈥?79. CrossRef
    5. Deyashiki Y, Ogasawara A, Nakayama T, Nakanishi M, Miyabe Y, Sato K, Hara A: Molecular cloning of two human liver 3伪-hydroxysteroid/dihydrodiol dehydrogenase isoenzymes that are identical with chlordecone reductase and bile-acid binder. / Biochem J 1994, 299:545鈥?52.
    6. Khanna M, Qin KN, Wang RW, Cheng KC: Substrate specificity, gene structure, and tissue-specific distribution of multiple human 3伪-hydroxysteroid dehydrogenases. / J Biol Chem 1995, 270:20162鈥?0168. CrossRef
    7. Lin HK, Jez JM, Schlegel BP, Peehl DM, Pachter JA, Penning TM: Expression and characterization of recombinant type 2 3伪-hydroxysteroid dehydrogenase (HSD) from human prostate: demonstration of bifunctional 3伪/17尾-HSD activity and cellular distribution. / Mol Endocrinol 1997, 11:1971鈥?984. CrossRef
    8. Schlegel BP, Pawlowski JE, Hu Y, Scolnick DM, Covey DF, Penning TM: Secosteroid mechanism-based inactivators and site-directed mutagenesis as probes for steroid hormone recognition by 3 alpha-hydroxysteroid dehydrogenase. / Biochemistry 1994, 33:10367鈥?0374. CrossRef
    9. Penning TM, Pawlowski JE, Schlegel BP, Jez JM, Lin HK, Hoog SS, Bennett MJ, Lewis M: Mammalian 3伪-hydroxysteroid dehydrogenases. / Steroids 1997, 61:508鈥?23. CrossRef
    10. Bohren KM, Bullock B, Wermuth B, Gabbay KH: The aldo-keto reductase superfamily. cDNAs and deduced amino acid sequences of human aldehyde and aldose reductases. / J Biol Chem 1989, 264:9547鈥?551.
    11. Hyndman D, Bauman DR, Heredia VV, Penning TM: The aldo-keto reductase superfamily homepage. / Chem Biol Interact 2003, (143鈥?44):621鈥?31.
    12. Dufort I, Rheault P, Huang XF, Soucy P, Luu-The V: Characteristics of a highly labile human type 5 17尾-hydroxysteroid dehydrogenase. / Endocrinology 1999, 140:568鈥?74. CrossRef
    13. Penning TM, Burczynski ME, Jez JM, Hung CF, Lin HK, Ma H, Moore M, Palackal N, Ratnam K: Human 3伪-hydroxysteroid dehydrogenase isoforms (AKR1C1-AKR1C4) of the aldo-keto reductase superfamily: functional plasticity and tissue distribution reveals roles in the inactivation and formation of male and female sex hormones. / Biochem J 2000, 351:67鈥?7. CrossRef
    14. Labrie F, Luu-The V, Lin SX, Labrie C, Simard J, Breton R, Belanger A: The key role of 17 尾-hydroxysteroid dehydrogenases in sex steroid biology. / Steroids 1997, 62:148鈥?58. CrossRef
    15. Lewis MJ, Wiebe JP, Heathcote JG: Expression of progesterone metabolizing enzyme genes (AKR1C1, AKR1C2, AKR1C3, SRD5A1, SRD5A2) is altered in human breast carcinoma. / BMC Cancer 2004, 4:27. CrossRef
    16. Zakharov V, Lin HK, Azzarello J, McMeekin S, Moore KN, Penning TM, Fung KM: Suppressed expression of type 2 3伪/type 5 17尾-hydroxysteroid dehydrogenase (AKR1C3) in endometrial hyperplasia and carcinoma. / Int J Clin Exp Pathol 2010, 3:608鈥?17.
    17. Martinez I, Wang J, Hobson KF, Ferris RL, Khan SA: Identification of differentially expressed genes in HPV-positive and HPV-negative oropharyngeal squamous cell carcinomas. / Eur J Cancer 2007, 43:415鈥?32. CrossRef
    18. Azzarello J, Fung KM, Lin HK: Tissue distribution of human AKR1C3 and rat homolog in adult genitourinary system. / J Histochem Cytochem 2008, 56:853鈥?61. CrossRef
    19. Nakamura Y, Suzuki T, Nakabayashi M, Endoh M, Sakamoto K, Mikami Y, Moriya T, Ito A, Takahashi S, Yamada S, / et al.: In situ androgen producing enzymes in human prostate cancer. / Endocr Relat Cancer 2005, 12:101鈥?07. CrossRef
    20. Fung KM, Samara ENS, Wong C, Metwalli A, Krlin R, Bane B, Liu CZ, Yang JT, Pitha JT, Culkin DJ, / et al.: Increased expression of type 2 3伪-hydroxysteroid dehydrogenase/type 5 17尾-hydroxysteroid dehydrogenase (AKR1C3) and its relationship with androgen receptor in prostate carcinoma. / Endocr Relat Cancer 2006, 13:169鈥?80. CrossRef
    21. Stanbrough M, Bubley G, Ross K, Golub TR, Rubin MA, Penning TM, Febbo PG, Balk SP: Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer. / Cancer Res 2006, 66:2815鈥?825. CrossRef
    22. Wako K, Kawasaki T, Yamana K, Suzuki K, Jiang S, Umezu H, Nishiyama T, Takahashi K, Hamakubo T, Kodama T, / et al.: Expression of androgen receptor through androgen-converting enzymes is associated with biological aggressiveness in prostate cancer. / J Clin Pathol 2008, 61:448鈥?54. CrossRef
    23. Wang S, Yang Q, Fung KM, Lin HK: AKR1C2 and AKR1C3 mediated prostaglandin D 2 metabolism augments the PI3K/Akt proliferative signaling pathway in human prostate cancer cells. / Mol Cell Endocrinol 2008, 289:60鈥?6. CrossRef
    24. Ades EW, Candal FJ, Swerlick RA, George VG, Summers S, Bosse DC, Lawley TJ: HMEC-1: establishment of an immortalized human microvascular endothelial cell line. / J Invest Dermatol 1992, 99:683鈥?90. CrossRef
    25. Lin HK, Steckelbroeck S, Fung KM, Jones AN, Penning TM: Characterization of a monoclonal antibody for human aldo-keto reductase AKR1C3 (type 2 3伪-hydroxysteroid dehydrogenase/type 5 17尾-hydroxysteroid dehydrogenase); immunohistochemical detection in breast and prostate. / Steroids 2004, 69:795鈥?01. CrossRef
    26. Dozmorov I, Knowlton N, Tang Y, Centola M: Statistical monitoring of weak spots for improvement of normalization and ratio estimates in microarrays. / BMC Bioinformatics 2004, 5:53. CrossRef
    27. Knowlton N, Dozmorov IM, Centola M: Microarray Data Analysis Toolbox (MDAT): for normalization, adjustment and analysis of gene expression data. / Bioinformatics 2004, 20:3687鈥?690. CrossRef
    28. Hua J, Balagurunathan Y, Chen Y, Lowey J, Bittner ML, Xiong Z, Suh E, Dougherty ER: Normalization benefits microarray-based classification. / EURASIP J Bioinform Syst Biol 2006, 43056.
    29. Gusnanto A, Calza S, Pawitan Y: Identification of differentially expressed genes and false discovery rate in microarray studies. / Curr Opin Lipidol 2007, 18:187鈥?93. CrossRef
    30. Dozmorov I, Centola M: An associative analysis of gene expression array data. / Bioinformatics 2003, 19:204鈥?11. CrossRef
    31. Pan KH, Lih CJ, Cohen SN: Effects of threshold choice on biological conclusions reached during analysis of gene expression by DNA microarrays. / Proc Natl Acad Sci USA 2005, 102:8961鈥?965. CrossRef
    32. Wright GW, Simon RM: A random variance model for detection of differential gene expression in small microarray experiments. / Bioinformatics 2003, 19:2448鈥?455. CrossRef
    33. Vadigepalli R, Chakravarthula P, Zak DE, Schwaber JS, Gonye GE: PAINT: a promoter analysis and interaction network generation tool for gene regulatory network identification. / OMICS 2003, 7:235鈥?52. CrossRef
    34. Wren JD: Extending the mutual information measure to rank inferred literature relationships. / BMC Bioinformatics 2004, 5:145. CrossRef
    35. Wren JD, Bekeredjian R, Stewart JA, Shohet RV, Garner HR: Knowledge discovery by automated identification and ranking of implicit relationships. / Bioinformatics 2004, 20:389鈥?98. CrossRef
    36. Wren JD, Garner HR: Shared relationship analysis: ranking set cohesion and commonalities within a literature-derived relationship network. / Bioinformatics 2004, 20:191鈥?98. CrossRef
    37. Azzarello J, Kropp BP, Fung KM, Lin HK: Age-dependent vascular endothelial growth factor expression and angiogenic capability of bladder smooth muscle cells: implications for cell-seeded technology in bladder tissue engineering. / J Tissue Eng Regen Med 2009, 3:579鈥?89. CrossRef
    38. Wren JD: A global meta-analysis of microarray expression data to predict unknown gene functions and estimate the literature-data divide. / Bioinformatics 2009, 25:1694鈥?701. CrossRef
    39. Bilezikjian LM, Corrigan AZ, Blount AL, Vale WW: Pituitary follistatin and inhibin subunit messenger ribonucleic acid levels are differentially regulated by local and hormonal factors. / Endocrinology 1996, 137:4277鈥?284. CrossRef
    40. Li W, Khorasheh S, Yuen BH, Ling N, Leung PC: Stimulation of progesterone secretion by recombinant follistatin-288 in human granulosa cells. / Endocrinology 1993, 132:1750鈥?756. CrossRef
    41. Carroll AG, Voeller HJ, Sugars L, Gelmann EP: p53 oncogene mutations in three human prostate cancer cell lines. / Prostate 1993, 23:123鈥?34. CrossRef
    42. Zhang M, Volpert O, Shi YH, Bouck N: Maspin is an angiogenesis inhibitor. / Nat Med 2000, 6:196鈥?99. CrossRef
    43. Attardi LD, Reczek EE, Cosmas C, Demicco EG, McCurrach ME, Lowe SW, Jacks T: PERP, an apoptosis-associated target of p53, is a novel member of the PMP-22/gas3 family. / Genes Dev 2000, 14:704鈥?18.
    44. Oda E, Ohki R, Murasawa H, Nemoto J, Shibue T, Yamashita T, Tokino T, Taniguchi T, Tanaka N: Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. / Science 2000, 288:1053鈥?058. CrossRef
    45. Mizumoto N, Hui F, Edelbaum D, Weil MR, Wren JD, Shalhevet D, Matsue H, Liu L, Garner HR, Takashima A: Differential activation profiles of multiple transcription factors during dendritic cell maturation. / J Invest Dermatol 2005, 124:718鈥?24. CrossRef
    46. Xu Z, Patterson TA, Wren JD, Han T, Shi L, Duhart H, Ali SF, Slikker W Jr: A microarray study of MPP+-treated PC12 Cells: Mechanisms of toxicity (MOT) analysis using bioinformatics tools. / BMC Bioinformatics 2005,6(Suppl 2):S8. CrossRef
    47. Revillion F, Lhotellier V, Hornez L, Bonneterre J, Peyrat JP: ErbB/HER ligands in human breast cancer, and relationships with their receptors, the bio-pathological features and prognosis. / Ann Oncol 2008, 19:73鈥?0. CrossRef
    48. Roger P, Pujol P, Lucas A, Baldet P, Rochefort H: Increased immunostaining of fibulin-1, an estrogen-regulated protein in the stroma of human ovarian epithelial tumors. / Am J Pathol 1998, 153:1579鈥?588. CrossRef
    49. Bi X, He H, Ye Y, Dai Q, Han Z, Liang Y, Zhong W: Association of TMPRSS2 and KLK11 gene expression levels with clinical progression of human prostate cancer. / Med Oncol 2010, 27:145鈥?51. CrossRef
    50. Wang G, Wang J, Sadar MD: Crosstalk between the androgen receptor and 尾-catenin in castrate-resistant prostate cancer. / Cancer Res 2008, 68:9918鈥?927. CrossRef
    51. Saitoh T, Katoh M: Expression and regulation of WNT5A and WNT5B in human cancer: up-regulation of WNT5A by TNFa in MKN45 cells and up-regulation of WNT5B by 尾-estradiol in MCF-7 cells. / Int J Mol Med 2002, 10:345鈥?49.
    52. Song RX, Zhang Z, Chen Y, Bao Y, Santen RJ: Estrogen signaling via a linear pathway involving insulin-like growth factor I receptor, matrix metalloproteinases, and epidermal growth factor receptor to activate mitogen-activated protein kinase in MCF-7 breast cancer cells. / Endocrinology 2007, 148:4091鈥?101. CrossRef
    53. Moll F, Katsaros D, Lazennec G, Hellio N, Roger P, Giacalone PL, Chalbos D, Maudelonde T, Rochefort H, Pujol P: Estrogen induction and overexpression of fibulin-1C mRNA in ovarian cancer cells. / Oncogene 2002, 21:1097鈥?107. CrossRef
    54. Naderi A, Teschendorff AE, Beigel J, Cariati M, Ellis IO, Brenton JD, Caldas C: BEX2 is overexpressed in a subset of primary breast cancers and mediates nerve growth factor/nuclear factor-kappaB inhibition of apoptosis in breast cancer cell lines. / Cancer Res 2007, 67:6725鈥?736. CrossRef
    55. Setlur SR, Mertz KD, Hoshida Y, Demichelis F, Lupien M, Perner S, Sboner A, Pawitan Y, Andren O, Johnson LA, / et al.: Estrogen-dependent signaling in a molecularly distinct subclass of aggressive prostate cancer. / J Natl Cancer Inst 2008, 100:815鈥?25. CrossRef
    56. Bailey CM, Khalkhali-Ellis Z, Seftor EA, Hendrix MJ: Biological functions of maspin. / J Cell Physiol 2006, 209:617鈥?24. CrossRef
    57. Guertin DA, Sabatini DM: Defining the role of mTOR in cancer. / Cancer cell 2007, 12:9鈥?2. CrossRef
    58. Marchong MN, Chen D, Corson TW, Lee C, Harmandayan M, Bowles E, Chen N, Gallie BL: Minimal 16q genomic loss implicates cadherin-11 in retinoblastoma. / Mol Cancer Res 2004, 2:495鈥?03.
    59. Sun L, Vitolo MI, Qiao M, Anglin IE, Passaniti A: Regulation of TGF尾1-mediated growth inhibition and apoptosis by RUNX2 isoforms in endothelial cells. / Oncogene 2004, 23:4722鈥?734. CrossRef
    60. Ogino H, Yano S, Kakiuchi S, Muguruma H, Ikuta K, Hanibuchi M, Uehara H, Tsuchida K, Sugino H, Sone S: Follistatin suppresses the production of experimental multiple-organ metastasis by small cell lung cancer cells in natural killer cell-depleted SCID mice. / Clin Cancer Res 2008, 14:660鈥?67. CrossRef
    61. da Silva Santos Duarte A, Sales TS, Mengel JO, Costa FF, Saad ST: Progesterone upregulates GATA-1 on erythroid progenitors cells in liquid culture. / Blood Cells Mol Dis 2002, 29:213鈥?24. CrossRef
    62. Perez-Stable CM, Pozas A, Roos BA: A role for GATA transcription factors in the androgen regulation of the prostate-specific antigen gene enhancer. / Mol Cell Endocrinol 2000, 167:43鈥?3. CrossRef
    63. Yeap BB, Voon DC, Vivian JP, McCulloch RK, Thomson AM, Giles KM, Czyzyk-Krzeska MF, Furneaux H, Wilce MC, Wilce JA, / et al.: Novel binding of HuR and poly(C)-binding protein to a conserved UC-rich motif within the 3'-untranslated region of the androgen receptor messenger RNA. / J Biol Chem 2002, 277:27183鈥?7192. CrossRef
    64. Streicher R, Kotzka J, Muller-Wieland D, Siemeister G, Munck M, Avci H, Krone W: SREBP-1 mediates activation of the low density lipoprotein receptor promoter by insulin and insulin-like growth factor-I. / J Biol Chem 1996, 271:7128鈥?133. CrossRef
    65. Ettinger SL, Sobel R, Whitmore TG, Akbari M, Bradley DR, Gleave ME, Nelson CC: Dysregulation of sterol response element-binding proteins and downstream effectors in prostate cancer during progression to androgen independence. / Cancer Res 2004, 64:2212鈥?221. CrossRef
    66. Griffin MJ, Sul HS: Insulin regulation of fatty acid synthase gene transcription: roles of USF and SREBP-1c. / IUBMB life 2004, 56:595鈥?00. CrossRef
    67. Jin W, Chen Y, Di GH, Miron P, Hou YF, Gao H, Shao ZM: Estrogen receptor (ER) 尾 or p53 attenuates ER伪-mediated transcriptional activation on the BRCA2 promoter. / J Biol Chem 2008, 283:29671鈥?9680. CrossRef
    68. Hennessy BA, Harvey BJ, Healy V: 17尾-Estradiol rapidly stimulates c-fos expression via the MAPK pathway in T84 cells. / Mol Cell Endocrinol 2005, 229:39鈥?7. CrossRef
    69. Nunez C, Cansino JR, Bethencourt F, Perez-Utrilla M, Fraile B, Martinez-Onsurbe P, Olmedilla G, Paniagua R, Royuela M: TNF/IL-1/NIK/NF-魏B transduction pathway: a comparative study in normal and pathological human prostate (benign hyperplasia and carcinoma). / Histopathology 2008, 53:166鈥?76. CrossRef
    70. Araki S, Omori Y, Lyn D, Singh RK, Meinbach DM, Sandman Y, Lokeshwar VB, Lokeshwar BL: Interleukin-8 is a molecular determinant of androgen independence and progression in prostate cancer. / Cancer Res 2007, 67:6854鈥?862. CrossRef
    71. Ho SM: Estrogens and anti-estrogens: key mediators of prostate carcinogenesis and new therapeutic candidates. / J Cell Biochem 2004, 91:491鈥?03. CrossRef
    72. Steckelbroeck S, Jin Y, Gopishetty S, Oyesanmi B, Penning TM: Human cytosolic 3伪-hydroxysteroid dehydrogenases of the aldo-keto reductase superfamily display significant 3尾-hydroxysteroid dehydrogenase activity: implications for steroid hormone metabolism and action. / J Biol Chem 2004, 279:10784鈥?0795. CrossRef
    73. Dondi D, Piccolella M, Biserni A, Della Torre S, Ramachandran B, Locatelli A, Rusmini P, Sau D, Caruso D, Maggi A, Ciana P, Poletti A: Estrogen receptor 尾 and the progression of prostate cancer: role of 5伪-androstane-3尾,17尾-diol. / Endocr Relat Cancer 2010, 17:731鈥?42. CrossRef
    74. Walsh PC, Wilson JD: The induction of prostatic hypertrophy in the dog with androstanediol. / J Clin Invest 1976, 57:1093鈥?097. CrossRef
    75. Pandini G, Genua M, Frasca F, Squatrito S, Vigneri R, Belfiore A: 17尾-estradiol up-regulates the insulin-like growth factor receptor through a nongenotropic pathway in prostate cancer cells. / Cancer Res 2007, 67:8932鈥?941. CrossRef
    76. Chan JM, Stampfer MJ, Ma J, Gann P, Gaziano JM, Pollak M, Giovannucci E: Insulin-like growth factor-I (IGF-I) and IGF binding protein-3 as predictors of advanced-stage prostate cancer. / J Natl Cancer Inst 2002, 94:1099鈥?106.
    77. Malik SN, Brattain M, Ghosh PM, Troyer DA, Prihoda T, Bedolla R, Kreisberg JI: Immunohistochemical demonstration of phospho-Akt in high Gleason grade prostate cancer. / Clin Cancer Res 2002, 8:1168鈥?171.
    78. The pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/1471-2407/10/672/prepub
  • 作者单位:Mikhail G Dozmorov (1)
    Joseph T Azzarello (2) (3)
    Jonathan D Wren (1)
    Kar-Ming Fung (2) (4) (5)
    Qing Yang (2)
    Jeffrey S Davis (2)
    Robert E Hurst (2) (6)
    Daniel J Culkin (2)
    Trevor M Penning (7)
    Hsueh-Kung Lin (1) (3) (5)

    1. Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, 825 N.E. 13th Street, 73104, Oklahoma City, Oklahoma, USA
    2. Department of Urology, University of Oklahoma Health Sciences Center, 73104, Oklahoma City, USA
    3. Department of Physiology, University of Oklahoma Health Sciences Center, 73104, Oklahoma City, OK, USA
    4. Department of Pathology, University of Oklahoma Health Sciences Center, 73104, Oklahoma City, OK, USA
    5. Oklahoma City Department of Veterans Affairs Medical Center, 73104, Oklahoma City, OK, USA
    6. Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 73104, Oklahoma City, OK, USA
    7. Center of Excellence in Environmental Toxicology, Department of Pharmacology, University of Pennsylvania School of Medicine, 19104, Philadelphia, PA, USA
  • ISSN:1471-2407
文摘
Background Aldo-keto reductase (AKR) 1C family member 3 (AKR1C3), one of four identified human AKR1C enzymes, catalyzes steroid, prostaglandin, and xenobiotic metabolism. In the prostate, AKR1C3 is up-regulated in localized and advanced prostate adenocarcinoma, and is associated with prostate cancer (PCa) aggressiveness. Here we propose a novel pathological function of AKR1C3 in tumor angiogenesis and its potential role in promoting PCa progression. Methods To recapitulate elevated AKR1C3 expression in cancerous prostate, the human PCa PC-3 cell line was stably transfected with an AKR1C3 expression construct to establish PC3-AKR1C3 transfectants. Microarray and bioinformatics analysis were performed to identify AKR1C3-mediated pathways of activation and their potential biological consequences in PC-3 cells. Western blot analysis, reverse transcription-polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA), and an in vitro Matrigel angiogenesis assays were applied to validate the pro-angiogenic activity of PC3-AKR1C3 transfectants identified by bioinformatics analysis. Results Microarray and bioinformatics analysis suggested that overexpression of AKR1C3 in PC-3 cells modulates estrogen and androgen metabolism, activates insulin-like growth factor (IGF)-1 and Akt signaling pathways, as well as promotes tumor angiogenesis and aggressiveness. Levels of IGF-1 receptor (IGF-1R) and Akt activation as well as vascular endothelial growth factor (VEGF) expression and secretion were significantly elevated in PC3-AKR1C3 transfectants in comparison to PC3-mock transfectants. PC3-AKR1C3 transfectants also promoted endothelial cell (EC) tube formation on Matrigel as compared to the AKR1C3-negative parental PC-3 cells and PC3-mock transfectants. Pre-treatment of PC3-AKR1C3 transfectants with a selective IGF-1R kinase inhibitor (AG1024) or a non-selective phosphoinositide 3-kinases (PI3K) inhibitor (LY294002) abolished ability of the cells to promote EC tube formation. Conclusions Bioinformatics analysis followed by functional genomics demonstrated that AKR1C3 overexpression promotes angiogenesis and aggressiveness of PC-3 cells. These results also suggest that AKR1C3-mediated tumor angiogenesis is regulated by estrogen and androgen metabolism with subsequent IGF-1R and Akt activation followed by VEGF expression in PCa cells.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700