Perfusion CT allows prediction of therapy response in non-small cell lung cancer treated with conventional and anti-angiogenic chemotherapy
详细信息    查看全文
  • 作者:Nunzia Tacelli (1) (2)
    Teresa Santangelo (1) (2)
    Arnaud Scherpereel (2) (3)
    Alain Duhamel (2) (5)
    Valérie Deken (2) (5)
    Ernst Klotz (6)
    Alexis Cortot (2) (3)
    Jean-Jacques Lafitte (2) (3) (4)
    Frédéric Wallyn (2) (3)
    Jacques Remy (1) (2)
    Martine Remy-Jardin (1) (2) (7)
  • 关键词:Computed tomography ; Lung ; Lung cancer ; Neovascularization ; Anti ; angiogenic drugs
  • 刊名:European Radiology
  • 出版年:2013
  • 出版时间:August 2013
  • 年:2013
  • 卷:23
  • 期:8
  • 页码:2127-2136
  • 全文大小:444KB
  • 参考文献:1. Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58-2 CrossRef
    2. Tateishi U, Nishihara H, Tsukamoto E, Morikawa T, Tamaki N, Miyasaka K (2002) Lung tumors evaluated with FDG-PET and dynamic CT: the relationship between vascular density and glucose metabolism. J Comput Assist Tomogr 26:185-90 CrossRef
    3. Kiessling F, Boese J, Corvinus C et al (2004) Perfusion CT in patients with advanced bronchial carcinomas: a novel chance for characterization and treatment monitoring ? Eur Radiol 14:1226-233
    4. Yi CA, Lee KS, Kim EA et al (2004) Solitary pulmonary nodules: dynamic enhanced multidetector row CT study and comparison with vascular endothelial growth factor and microvessel density. Radiology 233:191-99 CrossRef
    5. Ovali GY, Sakar A, G?ktan C et al (2007) Thorax perfusion CT in non-small cell lung cancer. Comput Med Imaging Graph 31:686-91 CrossRef
    6. Li Y, Yang ZG, Chen TW, Chen HJ, Sun JY, Lu YR (2008) Peripheral lung carcinoma: correlation of angiogenesis and first-pass perfusion parameters of 64-detector row CT. Lung Cancer 61:44-3 CrossRef
    7. Wang J, Wu N, Cham MD, Song Y (2009) Tumor response in patients with advanced non-small cell lung cancer: perfusion CT evaluation of chemotherapy and radiation therapy. AJR Am J Roentgenol 193:1090-096 CrossRef
    8. Ng QS, Goh V, Fichte H et al (2006) Lung cancer perfusion at multidetector row CT: reproducibility of whole tumor quantitative measurements. Radiology 239:547-53 CrossRef
    9. Ng QS, Goh V, Klotz E et al (2006) Quantitative assessment of lung cancer perfusion using MDCT: does measurement reproducibility improve with greater tumor volume coverage? AJR Am J Roentgenol 187:1079-084 CrossRef
    10. Tacelli N, Remy-Jardin M, Copin MC et al (2010) Assessment of non-small cell lung cancer perfusion: pathologic-CT correlations in 15 patients. Radiology 257:863-71 CrossRef
    11. Ng QS, Goh V, Carnell D et al (2007) Tumor antivascular effects of radiotherapy combined with combrestatin a4 phosphate in human non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 67:1375-380 CrossRef
    12. Lind JS, Meijerink MR, Dingemans AM et al (2010) Dynamic contrast-enhanced CT in patients treated with sorafenib and erlotinib for non–small cell lung cancer: a new method of monitoring treatment? Eur Radiol 20:2890-898 CrossRef
    13. Fraioli F, Anzidei M, Zaccagna F et al (2011) Whole-tumor perfusion CT in patients with advanced lung adenocarcinoma treated with conventional and antiangiogenetic chemotherapy: initial experience. Radiology 259:574-82 CrossRef
    14. Therasse P, Arbuck SG, Eisenhauer EA et al (2000) New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92:205-16 CrossRef
    15. Sandler A, Gray R, Perry MC et al (2006) Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 355:2542-550 CrossRef
    16. Reck M, von Pawel J, Zatloukal P et al (2009) Phase III trial of cisplatin plus gemcitabine with either placebo or bevacizumab as first-line therapy for nonsquamous non-small-cell lung cancer: AVAil. J Clin Oncol 27:1227-234 CrossRef
    17. Barlesi F, Balleyguier C, Besse B et al (2010) Inter- and intraobserver consistency in assessing eligibility for bevacizumab (BVZ) in non-small-cell lung cancer (NSCLC) patients with centrally located tumors. Ann Oncol 21:1682-686 CrossRef
    18. Goldstraw P, Crowley J, Chansky K, International association for the Study of Lung Cancer International Staging Committee et al (2007) The IASLC Lung Cancer Staging Project: proposals for the revision of the TNM stage groupings in the forthcoming (seventh) edition of the TNM classification of malignant tumours. J Thorac Oncol 2:706-14 CrossRef
    19. Miles KA, Lee TY, Goh V, Experimental Cancer Medicine Centre Imaging Network Group et al (2012) Current status and guidelines for the assessment of tumor vascular support with dynamic contrast-enhanced computed tomography. Eur Radiol 22:1430-441 CrossRef
    20. Sabir A, Schor-Bardach R, Wilcox CJ et al (2008) Perfusion MDCT enables early detection of therapeutic response to antiangiogenic therapy. AJR Am J Roentgenol 191:133-39 CrossRef
    21. Koukourakis MI, Mavanis I, Kouklakis G et al (2007) Early antivascular effects of bevacizumab anti-VEGF monoclonal antibody on colorectal carcinomas assessed with functional CT imaging. Am J Clin Oncol 30:315-18 CrossRef
    22. Willett CG, Boucher Y, di Tomaso E et al (2004) Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med 10:145-47 CrossRef
    23. Yabuuchi H, Hatakenaka M, Takayama K et al (2011) Non-small cell lung cancer: detection of early response to chemotherapy by using contrast-enhanced dynamic and diffusion-weighted MR imaging. Radiology 2:598-04 CrossRef
    24. Weber WA, Petersen V, Schmidt B et al (2003) Positron emission tomography in non-small-cell lung cancer: prediction of response to chemotherapy by quantitative assessment of glucose use. J Clin Oncol 15:2651-657 CrossRef
    25. Lee DH, Kim SK, Lee HY et al (2009) Early prediction of response to first-line therapy using integrated 18F-FDG PET/CT for patients with advanced/metastatic non-small cell lung cancer. J Thorac Oncol 4:816-21 CrossRef
    26. Hoang T, Dahlberg SE, Sandler AB, Brahmer JR, Shiller JH, Johnson DH (2012) Prognostic models to predict survival in non-small-cell lung cancer patients treated with first-line paclitaxel and carboplatin with or without bevacizumab. J Thorac Oncol 7:1361-368 CrossRef
  • 作者单位:Nunzia Tacelli (1) (2)
    Teresa Santangelo (1) (2)
    Arnaud Scherpereel (2) (3)
    Alain Duhamel (2) (5)
    Valérie Deken (2) (5)
    Ernst Klotz (6)
    Alexis Cortot (2) (3)
    Jean-Jacques Lafitte (2) (3) (4)
    Frédéric Wallyn (2) (3)
    Jacques Remy (1) (2)
    Martine Remy-Jardin (1) (2) (7)

    1. Department of Thoracic Imaging, Hospital Calmette (EA 2694), University of Lille Nord de France, 59000, Lille, France
    2. Faculty of Medicine, Henri Warembourg, University of Lille Nord de France, 59000, Lille, France
    3. Department of Pulmonary and Thoracic Oncology, University of Lille Nord de France, 59000, Lille, France
    5. Department of Medical Statistics, University of Lille Nord de France, 59000, Lille, France
    6. Computed Tomography Division, Siemens Healthcare, 91301, Forchheim, Germany
    4. INSERM unit 1019, CIIL, Pasteur Institute of Lille, Lille, France
    7. Department of Thoracic Imaging, Hospital Calmette, Boulevard Jules Leclercq, 59037, Lille cedex, France
文摘
Objectives To determine whether CT can depict early perfusion changes in lung cancer treated by anti-angiogenic drugs, allowing prediction of response. Methods Patients with non-small cell lung cancer, treated by conventional chemotherapy with (Group 1; n--7) or without (Group 2; n--3) anti-vascular endothelial growth factor (anti-VEGF) drug (bevacizumab) underwent CT perfusion before (TIME-) and after 1 (TIME-), 3 (TIME-) and 6 (TIME-) cycles of chemotherapy. The CT parameters evaluated included: (1) total tumour vascular volume (TVV) and total tumour extravascular flow (TEF); (2) RECIST (Response Evaluation Criteria in Solid Tumours) measurements. Tumour response was also assessed on the basis of the clinicians-overall evaluation. Results In Group 1, significant reduction in perfusion was identified between baseline and: (1) TIME- (TVV, P--.0395; TEF, P--.015); (2) TIME- (TVV, P--.0043; TEF, P-lt;-.0001); (3) TIME- (TVV, P--.0034; TEF, P--.0005) without any significant change in Group 2. In Group 1: (1) the reduction in TVV at TIME- was significantly higher in responders versus non-responders at TIME- according to RECIST (P--.0128) and overall clinicians-evaluation (P--.0079); (2) all responders at TIME- had a concurrent decrease in TVV and TEF at TIME-. Conclusion Perfusion CT demonstrates early changes in lung cancer vascularity under anti-angiogenic chemotherapy that may help predict therapeutic response. Key Points -Perfusion CT has the potential of providing in vivo information about tumour vasculature. -CT depicts early and specific perfusion changes in NSCLC under anti-angiogenic drugs. -Specific therapeutic effects of anti-angiogenic drugs can be detected before tumour shrinkage. -Early perfusion changes can help predict therapeutic response to anti-angiogenic treatment. -Perfusion CT could be a non-invasive tool to monitor anti-angiogenic treatment.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700