Population structure and connectivity of the European conger eel (Conger conger) across the north-eastern Atlantic and western Mediterranean: integrating molecular and otolith elemental approaches
详细信息    查看全文
  • 作者:Alberto T. Correia (12) atcorreia.ciimar@gmail.com
    Ana A. Ramos (3)
    Filipe Barros (1)
    Gon?alo Silva (3)
    Paul Hamer (4)
    Pedro Morais (15)
    Regina L. Cunha (3)
    Rita Castilho (3)
  • 刊名:Marine Biology
  • 出版年:2012
  • 出版时间:July 2012
  • 年:2012
  • 卷:159
  • 期:7
  • 页码:1509-1525
  • 全文大小:643.1 KB
  • 参考文献:1. Als TD, Hansen MM, Maes GE, Castonguay M, Riemann L, Aarestrup K, Munk P, Sparholt H, Hanel R, Bernatchez L (2011) All roads lead to home: panmixia of European eel in the Sargasso Sea. Mol Ecol 20:1333–1346
    2. Ayre DJ, Minchinton TE, Perrin C (2009) Does life history predict past and current connectivity for rocky intertidal invertebrates across a marine biogeographic barrier? Mol Ecol 18:1887–1903
    3. Balls PW (1986) Composition of suspended particulate matter from Scottish coastal waters—geochemical implications for the transport of trace metal contaminants. Sci Total Environ 57:171–180
    4. Balls P, Cofino W, Schmidt D, Topping G, Wilson S (1993) ICES baseline survey of trace metals in European shelf waters. ICES J Mar Sci 50:435–444
    5. Bandelt HJ, Forster P, R?hl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48. www.fluxus-engineering.com
    6. Bath GE, Thorrold SR, Jones CM, Campana SE, McLaren JW, Lam JWH (2000) Strontium and barium uptake in aragonitic otoliths of marine fish. Geochim Cosmochim AC 64:1705–1714
    7. Bauchot ML, Saldanha L (1986) Fishes of the northeastern Atlantic and the Mediterranean. UNESCO, Paris
    8. Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188
    9. Bergenius MAJ, Mapstone BD, Begg GA, Murchie CD (2005) The use of otolith chemistry to determine stock structure of three epinepheline serranid coral reef fishes on the great barrier reef, Australia. Fish Res 72:253–270
    10. Bishop R, Torres J (1999) Leptocephalus energetics: metabolism and excretion. J Exp Biol 202:2485–2493
    11. Bonhommeau S, Chassot E, Rivot E (2008) Fluctuations in European eel (Anguilla anguilla) recruitment resulting from environmental changes in the Sargasso Sea. Fish Oceanogr 17:32–44
    12. Bradbury IR, Campana SE, Bentzen P (2008) Estimating contemporary early life-history dispersal in an estuarine fish: integrating molecular and otolith elemental approaches. Mol Ecol 17:1438–1450
    13. Brophy D, Jeffries TE, Danilowicz BS (2004) Elevated manganese concentrations at the cores of clupeid otoliths: possible environmental, physiological, and structural origins. Mar Biol 144:779–786
    14. Campana SE (1999) Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Mar Ecol Prog Ser 188:263–297
    15. Campana SE, Thorrold SR (2001) Otoliths, increments, and elements: keys to a comprehensive understanding of fish populations? Can J Fish Aquat Sci 58:30–38
    16. Campana SE, Chouinard GA, Hanson JM, Frechet A (1999) Mixing and migration of overwintering Atlantic cod (Gadus morhus) stocks near the mouth of the Gulf of St Lawrence. Can J Fish Aquat Sci 56:1873–1881
    17. Campana SE, Chouinard GA, Hanson JM, Fréchet A, Brattey J (2000) Otolith elemental fingerprints as biological tracers of fish stocks. Fish Res 46:343–357
    18. Cau A, Manconi P (1983) Sex ratio and spatial displacement in Conger conger (L., 1758). Rapp P-V Reun Comm Int Explor Sci Mer Mediterr Monaco 28:93–96
    19. Cau A, Manconi P (1984) Relationship of feeding, reproductive cycle and bathymetric distribution in Conger conger. Mar Biol 81:147–151
    20. Chow S, Hazama K (1998) Universal PCR primers for S7 ribosomal protein gene introns in fish. Mol Ecol 7:1255–1256
    21. Correia AT, Isidro EJ, Antunes C, Coimbra J (2002) Age, growth, distribution and ecological aspects of Conger conger leptocephali collected in the Azores, based on otolith analysis of premetamorphic specimens. Mar Biol 141:1141–1151
    22. Correia AT, Antunes C, Isidro EJ, Coimbra J (2003) Changes in otolith microstructure and microchemistry during the larval development of the European conger eel (Conger conger). Mar Biol 142:777–789
    23. Correia AT, Antunes C, Wilson JM, Coimbra J (2006a) An evaluation of the otolith characteristics of Conger conger during metamorphosis. J Fish Biol 68:99–119
    24. Correia AT, Faria R, Alexandrino P, Antunes C, Isidro EJ, Coimbra J (2006b) Evidence for genetic differentiation in the European conger eel Conger conger based on mitochondrial DNA analysis. Fish Sci 72:20–27
    25. Correia AT, Manso S, Coimbra J (2009) Age, growth and reproductive biology of the European conger eel (Conger conger) from the Atlantic Iberian waters. Fish Res 99:196–202
    26. Correia AT, Barros F, Sial A (2011) Stock discrimination of European conger eel (Conger conger L.) using otolith stable isotope ratios. Fish Res 108:88–94
    27. Davis WJ (1993) Contamination of coastal versus open ocean surface waters: a brief meta-analysis. Mar Pollut Bull 26:128–134
    28. De Leeuw J (1977) Applications of convex analysis to multidimensional scaling. In: Barra J, Brodeau F, Romier G, Cutsem BV (eds) Recent developments in statistics. North Holland Publishing Company, Amsterdam, The Netherlands, pp 133–145
    29. Dehairs F, Lambert CE, Chesselet R, Risler N (1987) The biological production of marine suspended barite and the barium cycle in the western Mediterranean sea. Biogeochemistry 4:119–139
    30. Dias JA, Rodrigues A, Magalh?es F (1997) Evolu??o da linha de costa em Portugal, desde o último máximo glaciário até a actualidade: síntese dos conhecimentos. Estudos do Quaternário 1:53–66
    31. Dittman A, Quinn T (1996) Homing in Pacific salmon: mechanisms and ecological basis. J Exp Biol 199:83
    32. Dupanloup I, Schneider S, Langaney A, Excoffier L (2002) A simulated annealing approach to define the genetic structure of populations. Mol Ecol 11:2571–2581
    33. Elsdon TS, Gillanders BM (2006) Temporal variability in strontium, calcium, barium, and manganese in estuaries: implications for reconstructing environmental histories of fish from chemicals in calcified structures. Estuar Coast Shelf Sci 66:147–156
    34. Elsdon TS, Wells BK, Campana SE, Gillanders BM, Jones CM, Limburg KE, Secor DH, Thorrold SR, Walther BD (2008) Otolith chemistry to describe movements and life-history parameters of fishes: hypotheses, assumptions, limitations and inferences. Oceanogr Mar Biol 46:297–330
    35. Ely B, Vinas J, Bremer JRA, Black D, Lucas L, Covello K, Labrie AV, Thelen E (2005) Consequences of the historical demography on the global population structure of two highly migratory cosmopolitan marine fishes: the yellowfin tuna (Thunnus albacares) and the skipjack tuna (Katsuwonus pelamis). BMC Evol Biol 5:19
    36. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567
    37. Fannon E, Fahy E, O’Reilly R (1990) Maturation in female conger eel, Conger conger (L.). J Fish Biol 36:275–276
    38. Figueiredo MJ, Figueiredo I, Correia J (1996) Caracterizac?o geral dos recursos de profundidade em estudo no IPIMAR. Relatorio Cientifico Tecnico Instituto Investigac?o Maritima 21
    39. Floeter SR, Rocha LA, Robertson DR, Joyeux JC, Smith-Vaniz WF, Wirtz P, Edwards AJ, Barreiros JP, Ferreira CEL, Gasparini JL, Brito A, Falcon JM, Bowen BW, Bernardi G (2008) Atlantic reef fish biogeography and evolution. J Biogeogr 35:22–47
    40. Fowler AJ, Campana SE, Jones CM, Thorrold SR (1995) Experimental assessment of the effect of temperature and salinity on elemental composition of otoliths using laser ablation ICPMS. Can J Fish Aquat Sci 52:1431–1441
    41. Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925
    42. Galarza J, Carreras-Carbonell J, Macpherson E, Pascual M, Roques S, Turner G, Rico C (2009) The influence of oceanographic fronts and early-life-history traits on connectivity among littoral fish species. Proc Natl Acad Sci USA 106:1473–1478
    43. Gillanders BM (2002) Temporal and spatial variability in elemental composition of otoliths: implications for determining stock identity and connectivity of populations. Can J Fish Aquat Sci 59:669–679
    44. Hamer PA, Jenkins GP, Gillanders BM (2003) Otolith chemistry of juvenile snapper Pagrus auratus in Victorian waters: natural chemical tags and their temporal variation. Mar Ecol Prog Ser 263:261–273
    45. Hamer PA, Jenkins GP, Coutin P (2006) Barium variation in Pagrus auratus (Sparidae) otoliths: a potential indicator of migration between an embayment and ocean waters in south-eastern Australia. Estuar Coast Shelf Sci 68:686–702
    46. Hayward PJ, Ryland JS (1995) Handbook of the marine fauna of North-West Europe. Oxford University Press, Oxford
    47. Hellberg ME, Burton RS, Neigel JE, Palumbi SR (2002) Genetic assessment of connectivity among marine populations. Bull Mar Sci 70:273–290
    48. Hudson R (2000) A new statistic for detecting genetic differentiation. Genetics 155:2011–2014
    49. Khélifi N, Sarnthein M, Andersen N, Blanz T, Frank M, Garbe-Schonberg D, Haley B, Stumpf R, Weinelt M (2009) A major and long-term Pliocene intensification of the Mediterranean outflow, 3.5–3.3 Ma ago. Geology 37:811–814
    50. Kimura Y, Ishikawa S, Tokai T, Nishida M, Tsukamoto K (2004) Early life history characteristics and genetic homogeneity of Conger myriaster leptocephali along the east coast of central Japan. Fish Res 70:61–69
    51. Klanten O, Choat J, van Herwerden L (2007) Extreme genetic diversity and temporal rather than spatial partitioning in a widely distributed coral reef fish. Mar Biol 150:659–670
    52. Kocher TD, Thomas WK, Meyer A, Edwards SV, P??bo S, Villablanca FX, Wilson AC (1989) Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci USA 86:6196–6200
    53. Kruskal J (1964) Nonmetric multidimensional scaling: a numerical method. Psychometrika 29:115–129
    54. Lahaye Y, Lambert D, Walters S (1997) Ultraviolet laser sampling and high resolution inductively coupled plasma-mass spectrometry of NIST and BCR-2G glass reference materials. Geostandard Newslett 21:205–214
    55. Leis JM (2006) Are larvae of demersal fishes plankton or nekton? Advanc Mar Biol 51:57–141
    56. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452
    57. Ludden JN, Feng R, Gauthier G, Stix J, Shi L, Francis D, Machado N, Wu G (1995) Applications of LAM-ICP-MS analysis of minerals. Can Mineral 33:419–434
    58. Ma T, Aoyama J, Miller MJ, Yuki Minegishi Y, Inoue GJ, Katsumi Tsukamoto K (2008) Genetic differentiation in the genus Uroconger in the Indo-Pacific region. Aquat Biol 2:29–35
    59. Manel S, Gaggiotti O, Waples RS (2005) Assignment methods: matching biological questions with appropriate techniques. Trends Ecol Evol 20:2603–2607
    60. Marohn L, Hilge V, Zumholz K, Klügel A, Anders H, Hanel R (2011) Temperature dependency of element incorporation into European eel (Anguilla anguilla) otoliths. Anal Bioanal Chem 399:2175–2184
    61. Martinez P, Gonzalez EG, Castilho R, Zardoya R (2006) Genetic diversity and historical demography of Atlantic bigeye tuna (Thunnus obesus). Mol Phylogenet Evol 39:404–416
    62. Milton DA, Chenery SR, Farmer MJ, Blaber SJM (1997) Identifying the spawning estuaries of the tropical shad, terubok Tenualosa toli, using otolith microchemistry. Mar Ecol Prog Ser 153:283–291
    63. Mochioka N, Iwamizu M (1996) Diet of anguilloid larvae: leptocephali feed selectively on larvacean houses and fecal pellets. Mar Biol 125:447–452
    64. Patarnello T, Volckaert FAMJ, Castilho R (2007) Pillars of Hercules: is the Atlantic-Mediterranean transition a phylogeographical break? Mol Ecol 16:4426–4444
    65. Patterson HM, Kingsford MJ, Mcculoch MT (2004) Elemental signatures of Pomacentrus coelestis at multiple spatial scales on the Great Barrier Reef, Australia. Mar Ecol Prog Ser 270:229–239
    66. Pearce NJ, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostandard Newslett 21:115–144
    67. Posada D (2008a) Collapse v 1.5. http://darwin.uvigo.es/software/collapse.html
    68. Posada D (2008b) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256
    69. Proctor CH, Thresher RE, Gunn JS, Mills DJ, Harrowfield IR, Sie SH (1995) Stock structure of the southern bluefin tuna Thunnus maccoyi: an investigation based on probe microanalysis of otolith composition. Mar Biol 122:511–526
    70. Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge
    71. Ramos-Onsins SE, Rozas J (2002) Statistical properties of new neutrality tests against population growth. Mol Biol Evol 19:2092–2100
    72. Reis-Santos P, Vasconcelos RP, Ruano M, Latkoczy C, Gunther D, Costa MJ, Cabral H (2008) Interspecific variations of otolith chemistry in estuarine fish nurseries. J Fish Biol 72:2595–2614
    73. Rex MA, McClain CR, Johnson N, Etter RJ, Allen J, Bouchet P, Warén A (2005) A source-sink hypothesis for abyssal biodiversity. Am Nat 165:163–178
    74. Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–569
    75. Ruttenberg BI, Hamilton SL, Hickford MJH, Paradis GL, Sheehy MS, Standish JD, Ben-Tzvi O, Warner RR (2005) Elevated levels of trace elements in cores of otoliths and their potential for use as natural tags. Mar Ecol Prog Ser 297:273–281
    76. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. CSHL Press, New York
    77. Sbaihi M, Fouchereau-Peron M, Meunier F, Elie P, Mayer I, Burzawa-Gerard E, Vidal B, Dufour S (2001) Reproductive biology of conger eel from the south coast of Brittany, France and comparison with the European eel. J Fish Biol 59:302–318
    78. Selkoe KA, Henzler CM, Gaines SD (2008) Seascape genetics and the spatial ecology of marine populations. Fish Fish 9:363–377
    79. Slatkin M, Hudson RR (1991) Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 129:555–562
    80. Smith SJ, Campana SE (2010) Integrated stock mixture analysis for continuous and categorical data, with application to genetic–otolith combinations. Can J Fish Aquat Sci 67:1533–1567
    81. Strehlow B, Antunes C, Niermann U, Tesch FW (1998) Distribution and ecological aspects of leptocephali collected 1979–1994 in North and Central Atlantic. I. Congridae. Helgol Meeresunter 52:85–102
    82. Sullivan SO, Moriarty C, Fitsgerard RD, Davenport J, Mulcahy MF (2003) Age, growth and reproductive status of the European conger eel Conger conger (L.) in Irish coastal waters. Fish Res 64:55–69
    83. Swearer SE, Forrester GE, Steele MA, Brooks AJ, Lea DW (2003) Spatio-temporal and interspecific variation in otolith trace-elemental fingerprints in a temperate estuarine fish assemblage. Estuar Coast Shelf Sci 56:1111–1123
    84. Tajima F (1989) Statistical testing for the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595
    85. Tavaré S (1986) Some probabilistic and statistical problems in the analysis of DNA sequences. Lect Math Life Sci 17:57–86
    86. Tero N, Aspi J, Siikamaki P, Jakalaniemi A, Tuomi J (2003) Genetic structure and gene flow in a metapopulation of an endangered plant species, Silene tatarica. Mol Ecol 12:2073–2085
    87. Thresher RE (1999) Elemental composition of otoliths as a stock delineator in fishes. Fish Res 43:165–204
    88. Thresher RE, Proctor CH, Gunn JS, Harrowfield IR (1994) An evaluation of electron probe microanalysis of otoliths for stock delineation and identification of nursery areas in a southern temperate groundfish, Nemadactylus macropterus (Cheilodactylidae). Fish Bull 92:817–840
    89. Tsukamoto K (2006) Oceanic biology: spawning of eels near a seamount. Nature 439:929
    90. Warner RR, Stephen E, Swearer SE, Caselle JE, Sheehy M, Paradis G (2005) Natal trace-elemental signatures in the otoliths of an open-coast fish. Limnol Oceanogr 50:1529–1542
    91. Yoshinaga J, Atsuko N, Masatoshi M, Edmonds JS (2000) Fish otolith reference material for quality assurance of chemical analyses. Mar Chem 69:91–97
  • 作者单位:1. Centro Interdisciplinar de Investiga??o Marinha e Ambiental, CIIMAR-CIMAR Laboratório Associado, Rua dos Bragas 289, 4050-123 Porto, Portugal2. Faculdade de Ciências da Saúde (FCS), Centro Interdisciplinar de Altera??es Globais e Bioengenharia (CIAGEB), Universidade Fernando Pessoa (UFP), Rua Carlos Maia, 296, 4200-150 Porto, Portugal3. CCMAR-CIMAR Laboratório Associado, Centro de Ciências do Mar, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal4. Department of Primary Industries, Fisheries Research Branch, P.O. Box 114, 2A Bellarine Highway, Queenscliff, VIC 3225, Australia5. International Centre for Coastal Ecohydrology, Solar do Capit?o Mor, EN125 Horta das Figuras, 8000-518 Faro, Portugal
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Ecology
    Biomedicine
    Oceanography
    Microbiology
    Zoology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-1793
文摘
Genetic variation (mtDNA) of the European conger eel, Conger conger, was compared across five locations in the north-eastern Atlantic (Madeira, Azores, South Portugal, North Portugal and Ireland) and one location in the western Mediterranean (Mallorca). Genetic diversity of conger eel was high, and differentiation among regions was not significant. Additionally, comparisons of element:Ca ratios (Sr:Ca, Ba:Ca, Mn:Ca and Mg:Ca) in otolith cores (larval phase) and edges (3 months prior to capture) among the Azores, North Portugal, Madeira and Mallorca regions for 2 years indicated that variation among regions were greater for edges than cores. Therefore, while benthic conger may display residency at regional scales, recruitment may not necessarily be derived from local spawning and larval retention. Furthermore, data from otoliths suggest a separated replenishment source for western Mediterranean and NE Atlantic stocks. The combination of genetics and otolith chemistry suggests a population model for conger eel involving a broad-scale dispersal of larvae, with limited connectivity for benthic juvenile life stages at large spatial scales, although the existence of one or multiple spawning grounds for the species remains uncertain.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700