Changes in Coastal Benthic Algae Succession Trajectories and Assemblages Under Contrasting Nutrient and Grazer Loads
详细信息    查看全文
  • 作者:A. Fricke ; G. A. Kopprio ; D. Alemany ; M. Gastaldi ; M. Narvarte…
  • 关键词:Nutrients ; Grazers ; Epibenthos ; Algae ; Succession ; Intertidal
  • 刊名:Estuaries and Coasts
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:39
  • 期:2
  • 页码:462-477
  • 全文大小:1,640 KB
  • 参考文献:Aleem, A.A. 1957. Succession of marine fouling organisms on test panels immersed in deep-water at la Jolla, California. Hydrobiologia 11: 40–58.CrossRef
    Al-Handal, A.Y., and A. Wulff. 2008. Marine epiphytic diatoms from the shallow sublittoral zone in Potter Cove, King George Island, Antarctica. Botanica Marina 51(5): 411–435.CrossRef
    Burkepile, D.E., and M.E. Hay. 2006. Herbivore vs. nutrient control of marine primary producers: Context-dependent effects. Ecology 87: 3128–3139.CrossRef
    Callow, M.E., A.R. Jennings, B. A:B:, C.E. Seegert, G. Amy, W. Leslie, A. Feinberg, R. Baney, and J.A. Callow. 2002. Microtopographic cues for settlement of zoospores of the green fouling alga Enteromorpha. Biofouling 18: 237–245.CrossRef
    Cattaneo, A. 1990. The effect of fetch on periphyton spatial variation. Hydrobiologia 206(1): 1–10.
    Cejudo-Figueiras, C., I. Álvarez-Blanco, E. Bécares, and S. Blanco. 2010. Epiphytic diatoms and water quality in shallow lakes: the neutral substrate hypothesis revisited. Marine Freshwater Research 61: 1457–1467.CrossRef
    Cloern, J.E. 2001. Our evolving conceptual model of the coastal eutrophication problem. Marine Ecological Progress Series 210: 223–253.CrossRef
    Connell, J.H., and R.O. Slatyer. 1977. Mechanisms of succession in natural communities and their role in community stability and organization. The American Naturalist 111: 1119–1144.CrossRef
    Cuba, T.R., and N.J. Blake. 1983. The initial development of a marine fouling assemblage on a natural substrate in a subtropical estuary. Botanica Marina XXVI: 259–264.
    Davis, A.R. 2009. The role of mineral, living and artificial substrata in the development of subtidal assemblages. In Marine Hard Bottom Communities, ed. M. Wahl, 19–37. Dordrecht: Springer.CrossRef
    Diaz, R.J., and R. Rosenberg. 2013. Overview of anthropogenically-induced hypoxic effects on marine benthic fauna, coastal hypoxia: consequences for living resources and ecosystems. In Coastal Hypoxia: Consequences for Living ressources and Ecosystems. American Geophysical Union: pp 129–145.
    Doty, M.S. 1971. Measurement of water movement in reference to benthic algal growth. Botanica Marina 14: 32–35.CrossRef
    Duarte, C.M. 1995. Submerged aquatic vegetation in relation to different nutrient regimes. Ophelia 41: 87–112.CrossRef
    Fricke, A., M. Molis, C. Wiencke, N. Valdivia, and A.S. Chapman. 2008. Natural succession of macroalgal-dominated epibenthic assemblages at different water depths and after transplantation from deep to shallow water on Spitsbergen. Polar Biology 31: 1191–1203.CrossRef
    Fricke, A., M. Molis, C. Wiencke, N. Valdivia, and A.S. Chapman. 2011a. Effects of UV radiation on the structure of Arctic macrobenthic communities. Polar Biology 1-15.
    Fricke, A., M. Teichberg, S. Beilfuss, and K. Bischof. 2011b. Succession patterns in algal turf vegetation on a Caribbean coral reef. Botanica Marina 54: 111–126.CrossRef
    Gari, E.N., and M.C. Corigliano. 2007. Spatial and temporal variations of Cocconeis euglypta (Ehrenb.) 1854 Grunow, 1884 in drift and periphyton. Brazilian Journal of Biology 67.
    Geertz-Hansen, O., K. Sand-Jensen, D.F. Hansen, and A. Christiansen. 1993. Growth and grazing control of abundance of the marine macroalga Ulva lactuca L. in aeutrophic Danish estuary. Aquatic Botany 46: 101–109.CrossRef
    Hauxwell, J., J. Cebrian, and I. Valiela. 2003. Eelgrass Zostera marina loss intemperate estuaries: Relationship to land-derived nitrogen loads and effect of light limitation imposed by algae. Marine Ecology Progress Series 247: 59–73.CrossRef
    Hauxwell, J., J. Cebrian, and I. Valiela. 2006. Light dependence of Zostera marina annual growth dynamics in estuaries subject to different degrees of eutrophication. Aquatic Botany 84: 17–25.CrossRef
    Hillebrand, H., B. Worm, and H.K. Lotze. 2000. Marine microbenthic community structure regulated by nitrogen loading and grazing pressure. Marine Ecological Progress Series 204: 27–38.CrossRef
    Iribarne, O., P. Martinetto, E. Schwindt, F. Botto, A. Bortolus, and P.G. Borboroglu. 2003. Evidences of habitat displacement between two common soft-bottom SW Atlantic intertidal crabs. Journal of Experimental Marine Biology and Ecology 296: 167–182.CrossRef
    Jones, J.G. 1978. Spatial variation in epilithic algae in a stony stream (Wilfin Beck) with particular reference to Cocconeis placentula. Freshwater Biology 8: 539–546.CrossRef
    Kamermans, P., M. Erik-Jan, J.M. Verschuure, L. Lonneke Schrijvers, L. Franca, and A.T.A. Lien. 2002. Effect of grazing by isopods and amphipods on growth of Ulva spp. (Chlorophyta). Aquatic Ecology 36: 425–433.CrossRef
    Kattner, G. 1999. Storage of dissolved inorganic nutrients in seawater: Poisoning with mercuric chloride. Marine Chemistry 67(1–2): 61–66.CrossRef
    Kelly, M.G., and W. Brian Allan. 1995. The Trophic Diatom Index: a new index for monitoring eutrophication in rivers. Journal of Applied Phycology 7: 433–444.CrossRef
    Lam, C., T. Harder, and P.-Y. Qian. 2005. Growth conditions of benthic diatoms affect quality and quantity of extracellular polymeric larval settlement cues. Marine Ecological Progress Series 294: 109–116.CrossRef
    Liess, A., K. Lange, F. Schulz, J.J. Piggott, C.D. Matthaei, and C.R. Townsend. 2009. Light, nutrients and grazing interact to determine diatom species richness via changes to productivity, nutrient state and grazer activity. Journal of Ecology 97(2): 326–336.CrossRef
    Littler, M.M. 1980. Morphological form and photosynthetic performances of marine macroalgae: Tests of a functional / form hypothesis. Botanica Marina 22: 161–166.
    Littler, M.M., D.S. Littler, and B.L. Brooks. 2010. The effects of nitrogen and phosphorus enrichment on algal community development: Artificial mini-reefs on the Belize Barrier Reef sedimentary lagoon. Harmful Algae 9: 255–263.CrossRef
    Lotze, H.K., and B. Worm. 2000. Variable and complementary effects of herbivores on different life stages of bloom-forming macroalgae. Marine Ecological Progress Series 200: 167–175.CrossRef
    Magurran, A.E. 1988. Ecological diversity and its measurements. USA: Princeton University Press. 179pp.CrossRef
    Martinetto, P., P. Daleo, M. Escapa, J. Alberti, J.P. Isacch, E. Fanjul, F. Botto, M.L. Piriz, G. Ponce, G. Casas, and O. Iribarne. 2010. High abundance and diversity of consumers associated with eutrophic areas in a semi-desert macrotidal coastal ecosystem in Patagonia, Argentina. Estuarine, Coastal and Shelf Science 88: 357–364.CrossRef
    Martinetto, P., M. Teichberg, I. Valiela, D. Montemayor, and O. Iribarne. 2011. Top-down and bottom-up controls in a high nutrient-high herbivory coastal environment. Marine Ecological Progress Series 69-82.
    McClelland, J.W., and V. Ivan. 1998. Linking nitrogen in estuarine producers to land-derived sources. Limnology and Oceanography 43: 577–585.CrossRef
    Michels-Estrada, A. 1998. Effects of sewage water on diatoms (Bacillariophyceae) and water quality in two tropical streams in Costa Rica. Revista de Biología Tropical 46: 153–175.
    Mitchell, J.G., L. Seuront, M.J. Doubell, M. Dusan Losic, N.H. Voelcker, J. Seymour, and R. Lal. 2013. The role of diatom nanostructures in biasing diffusion to improve uptake in a patchy nutrient environment. PLoS ONE. doi:10.​1371/​journal.​pone.​0059548 .
    Mizuno, M. 1989. Autecological studies on the marine tube-dwelling diatom Berkeleya obtusa (GREV) GRUNOW. Scientific papers of the Institute of Algological Research, Faculty of Science, Hokkaido University 8(2): 63-115.
    Nixon, S.W. 1995. Coastal marine eutrophication: A definition, social causes, and future concerns. Ophelia 41: 199–219.CrossRef
    Osterling, M., and L. Pihl. 2001. Effects of filamentous green algal mats on benthic macrofaunal functional feeding groups. Journal of Experimental Marine Biology and Ecology 263: 159–183.CrossRef
    O'Toole, G., H.B. Kaplan, and R. Kolter. 2000. Biofilm formation as microbial development. Annual Review of Microbiology 54: 49–79.CrossRef
    Parodi, E.R., and S.B. Cao. 2003. Benthic microalgal communities in the inner part of the Bahía Blanca estuary (Argentina): A preliminary qualitative study. Oceanologica Acta 25: 279–284.CrossRef
    Patrick, R. 1976. The formation and maintenance of benthic diatom communities. Proceedings of the American Philosophical Society 120: 475–484.
    Piriz, M.L., M. Cecilia Eyras, and C.M. Rostagno. 2003. Changes in biomass and botanical composition of beach-cast seaweeds in a disturbed coastal area from Argentine Patagonia. Journal of Applied Phycology 15: 67–74.CrossRef
    Raimondi, P.T. 1988. Settlement cues and determination of the vertical limit of an intertidal barnacle. Ecology 69: 400–407.CrossRef
    Robinson, C.T., and S.R. Rushforth. 1987. Effects of physical disturbance and canopy cover on attached diatom community structure in an Idaho stream. Hydrobiologia 154: 49–59.CrossRef
    Round, F.E., R.M. Crawford, and D.G. Mann. 1990. The diatoms: biology & morphology of the Genera. Cambridge: Cambridge University Press.
    Schneck, F., A. Schwarzbold, and A.S. Melo. 2011. Substrate roughness affects stream benthic algal diversity, assemblage composition, and nestedness. Journal of the North American Benthological Society 30: 1049–1056.CrossRef
    Steneck, R.S., and M.N. Dethier. 1994. A functional group approach to the structure of algal dominated communities. Oikos 69(3): 476–498.
    Teichberg, M., S.E. Fox, C. Aguila, Y.S. Olsen, and I. Valiela. 2008. Macroalgal responses to experimental nutrient enrichment in shallow coastal waters: Growth, internal nutrient pools, and isotopic signatures. Marine Ecological Progress Series 368: 117–126.CrossRef
    Teichberg, M., S.E. Fox, Y.S. Olsen, V. Ivan, M. Paulina, I. Oscar, M. Elizabeti Yuriko, P. Monica AV, T.N. Corbisier, S.-J. Martín, P.-O. Federico, C. Paulo, F. Helena, Z. Andreina, C. Massimo, and T. davide. 2010. Eutrophication and macroalgal blooms in temperate and tropical coastal waters: nutrient enrichment experiments with Ulva spp. Global Change Biology 16: 2624–2637.
    Underwood, A.J. 1997. Their logical design and interpretation using analyses of variance. Experiments in ecology. Cambridge: Cambridge University Press.
    Valiela, I., J. McClelland, J. Hauxwell, P.J. Behr, D. Hersh, and K. Foreman. 1997. Macroalgal blooms in shallow estuaries: Controls and ecophysiological and ecosystem consequences. Limnology and Oceanography 42: 1105–1118.CrossRef
    Wahl, M., M. Molis, A. Andrew Davis, S. Dobretsov, S.T. Dürr, J. Johansson, J. Kinley, D. Kirugara, M. Langer, H.K. Lotze, M. Thiel, J.C. Thomaso, B. Worm, and D.Z. Ben-Yosef. 2004. UVR effects that come and go: A global comparison of marine benthic community level impacts. Global Change Biology 10: 1962–1972.CrossRef
    Whittaker, R.H. 1972. Evolution and measurement of species diversity. Taxon 21: 213–251.CrossRef
    Worm, B., H.K. Lotze, C. Boström, R. Engkvist, V. Labanauskas, and U. Sommer. 1999. Marine diversity shift linked to interactions among grazers, nutrients and propagule banks. Marine Ecological Progress Series 185: 309–314.CrossRef
    Wu, A.H.-F., K.N. Wu, K.L. Cho, and R. Lamb. 2013. Diatom attachment inhibition: Limiting surface accessibility through air entrapment. Biointerphases 8: 1–10.CrossRef
  • 作者单位:A. Fricke (1) (2)
    G. A. Kopprio (3)
    D. Alemany (4)
    M. Gastaldi (5)
    M. Narvarte (5)
    E. R. Parodi (3) (6)
    R. J. Lara (3)
    F. Hidalgo (4)
    A. Martínez (7)
    E. A. Sar (8)
    O. Iribarne (4)
    P. Martinetto (4)

    1. Department of Marine Botany, University of Bremen, Leobener Str. NW2, 28359, Bremen, Germany
    2. EA4228 ECOMERS, Faculté des Sciences, Université de Nice-Sophia Antipolis (UNS), Parc Valrose, 06108, Nice Cedex 2, France
    3. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto Argentino de Oceanografía (IADO), Florida 4750, Bahía Blanca, B8000FWB, Argentina
    4. Laboratorio de Ecología, Instituto de Investigaciones Marinas y Costeras (IIMyC), CONICET - Universidad Nacional de Mar del Plata, Mar del Plata, 7600, Argentina
    5. Instituto de Biología Marina y Pesquera Almirante Storni (IBMPAS), Escuela Superior de Ciencias Marinas, Universidad Nacional del Comahue, Güemes 1030, 8520, San Antonio Oeste, Río Negro, Argentina
    6. Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), San Juan 670, Bahía Blanca, B8000FWB, Argentina
    7. Departamento de Quimica, Universidad Nacional del Sur, Av. Alem 1253, Bahía Blanca, B8000FWB, Argentina
    8. División Ficología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Paseo del Bosque s/n, 1900, La Plata, Argentina
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Environment
    Ecology
    Geosciences
    Environmental Management
    Nature Conservation
  • 出版者:Springer New York
  • ISSN:1559-2731
文摘
Eutrophication plays a crucial role in coastal systems, driving changes in the composition and abundance of flora and fauna with consequent effects for the entire ecosystem. Sensitive to nutrient levels, micro- and macroalgal blooms serve as valuable indicators of eutrophication. The San Antonio Bay (Northern Argentinean Patagonia, 40° 43′ S, 64° 56′ W) provides an appropriate system to study in situ eutrophication processes on coastal communities. In a multi-scale approach, using two different kind of settlement substrates (micro: polyethylene terephthalate, and macro: ceramic), the present study followed benthic algal dynamics over one year, distinguishing changes in natural succession and seasonality. Strong differences were found in the biofilm assemblages after three days, marked by tube dwelling diatoms and Cocconeis spp. under high nutrient-grazer conditions and needle like diatoms (e.g. Nitzschia spp., Tabularia spp.) under lower nutrient-grazer loads. The succession continued by the colonization of macroalgae, with a higher recruitment rate in the nutrient and grazer rich environment with a concomitant higher diversity. Our results show that under higher nutrient-grazer conditions natural benthic succession not only differs in trajectory but in its final taxa composition promoting higher biodiversity and biomass accumulation. In addition, taxa specific substrate preferences interfere with the observed eutrophication pattern, suggesting substrate dependant interrelations between the bloom forming taxa. These findings provide evidence that nutrient enrichment can not only affect an established assemblage but also affect the early succession stages, changing the succession trajectory and thus the final assemblage. Keywords Nutrients Grazers Epibenthos Algae Succession Intertidal

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700