AM fungi and PGP pseudomonads increase flowering, fruit production, and vitamin content in strawberry grown at low nitrogen and phosphorus levels
详细信息    查看全文
  • 作者:Elisa Bona (1)
    Guido Lingua (1)
    Paola Manassero (1)
    Simone Cantamessa (1) (2)
    Francesco Marsano (1)
    Valeria Todeschini (1)
    Andrea Copetta (1) (2)
    Giovanni D鈥橝gostino (2)
    Nadia Massa (1)
    Lorena Avidano (1)
    Elisa Gamalero (1) (2)
    Graziella Berta (1) (2)

    1. Dipartimento di Scienze e Innovazione Tecnologica鈥擠ISIT
    ; Universit脿 del Piemonte Orientale 鈥淎. Avogadro鈥? Viale T. Michel 11 ; 15121 ; Alessandria (AL) ; Italy
    2. Mybasol s.r.l.
    ; Via Gentilini 3 ; 15121 ; Alessandria (AL) ; Italy
  • 关键词:Arbuscular mycorrhiza ; Pseudomonas ; Fruit quality ; Strawberry ; Plant growth ; promoting bacteria
  • 刊名:Mycorrhiza
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:25
  • 期:3
  • 页码:181-193
  • 全文大小:591 KB
  • 参考文献:1. Aimo, S, Gosetti, F, D鈥橝gostino, G, Gamalero, E, Gianotti, V, Bottaro, M, Gennaro, MC, Berta, G (2010) Use of arbuscular mycorrhizal fungi and beneficial soil bacteria to improve yield and quality of Saffron (Crocus sativus L.). ISHS Acta Horticult 850: pp. 159-162
    2. Altamura M, Biondi S, Colombo L, Guzzo F (2007) Elementi di Biologia dello sviluppo delle piante. EdiSES
    3. Aseri, GK, Jain, N, Panwar, J, Rao, AV, Meghwal, PR (2008) Biofertilizers improve plant growth, fruit yield, nutrition, metabolism and rhizosphere enzyme activities of pomegranate (Punica granatum L.) in Indian Thar Desert. Sci Hortic 117: pp. 130-135 CrossRef
    4. Bailly, A, Weisskopf, L (2012) The modulating effect of bacterial volatiles on plant growth current knowledge and future challenges. Plant Signal Behav 7: pp. 1-7 CrossRef
    5. Barea, J, Azc贸n-Aguilar, C (1982) Production of plant growth-regulating substances by the vesicular-arbuscular mycorrhizal fungus Glomus mosseae. Appl Environ Microbiol 43: pp. 810-813
    6. Barea, J, Gryndler, M, Lemanceau, P, Schuepp, H, Azcon, R The rhizosphere of mycorrhizal plants. In: Schuepp, H, Barea, J, Haselwandter, K, Gianinazzi, S eds. (2002) Mycorrhizal technology in agriculture. Birkhauser, Basel, pp. 1-19 CrossRef
    7. Baslam, M, Esteban, R, Garc铆a-Plazaola, JI, Goicoechea, N (2013) Effectiveness of arbuscular mycorrhizal fungi (AMF) for inducing the accumulation of major carotenoids, chlorophylls and tocopherol in green and red leaf lettuces. Appl Microbiol Biotechnol 97: pp. 3119-3128 CrossRef
    8. Berta, G, Copetta, A, Gamalero, E, Bona, E, Cesaro, P, Scarafoni, A, D鈥橝gostino, G (2014) Maize development and grain quality are differentially affected by mycorrhizal fungi and a growth-promoting pseudomonad in the field. Mycorrhiza 24: pp. 161-170 CrossRef
    9. Bidlack, W (1996) Interrelationships of food, nutrition, diet and health: the National Association of State Universities and Land Grant Colleges White Paper. J Am Coll Nutr 15: pp. 422-433 CrossRef
    10. Boldt, K, P枚rs, Y, Haupt, B, Bitterlich, M, K眉hn, C, Grimm, B, Franken, P (2011) Photochemical processes, carbon assimilation and RNA accumulation of sucrose transporter genes in tomato arbuscular mycorrhiza. J Plant Physiol 168: pp. 1256-1263 CrossRef
    11. Bona, E, Cattaneo, C, Cesaro, P, Marsano, F, Lingua, G, Cavaletto, M, Berta, G (2010) Proteomic analysis of Pteris vittata fronds: two arbuscular mycorrhizal fungi differentially modulate protein expression under arsenic contamination. Proteomics 10: pp. 3811-3834 CrossRef
    12. Bona, E, Marsano, F, Massa, N, Cattaneo, C, Cesaro, P, Argese, E, Sanit脿 di Toppi, L, Cavaletto, M, Berta, G (2011) Proteomic analysis as a tool for investigating arsenic stress in Pteris vittata roots colonized or not by arbuscular mycorrhizal symbiosis. J Proteomics 74: pp. 1338-1350 CrossRef
    13. Bryla, D, Koide, R (1998) Mycorrhizal response of two tomato genotype relates to their ability to acquire and utilization of phosphorus. Ann Bot 82: pp. 849-857 CrossRef
    14. Burkowska, B (2002) Growth and photosynthetic activity of micropropagated strawberry plants inoculated with endomycorrhizal fungi (AMF) and growing under drought stress. Acta Physiol Plant 24: pp. 365-370 CrossRef
    15. Castellanos-Morales, V, Villegas, J, Wendelin, S, Vierheilig, H, Eder, R, Cardenas-Navarro, R (2010) Root colonisation by the arbuscular mycorrhizal fungus Glomus intraradices alters the quality of strawberry fruits (Fragaria 脳 ananassa Duch.) at different nitrogen levels. J Sci Food Agric 90: pp. 1774-1782
    16. Chakrabarti, J, Chatterjee, S, Ghosh, S, Chatterjee, NC, Dutta, S (2010) Synergism of VAM and Rhizobium on production and metabolism of IAA in roots and root nodules of Vigna mungo. Curr Microbiol 61: pp. 203-209 CrossRef
    17. Chatterjee, I (1973) Evolution and the biosynthesis and ascorbic acid. Science 182: pp. 1271-1272 CrossRef
    18. Cicatelli, A, Lingua, G, Todeschini, V, Biondi, S, Torrigiani, P, Castiglione, S (2012) Arbuscular mycorrhizal fungi modulate the leaf transcriptome of a Populus alba L. clone grown on a zinc and copper-contaminated soil. Environ Exp Bot 75: pp. 25-35 CrossRef
    19. Copetta, A, Lingua, G, Berta, G (2006) Effects of three AM fungi on growth, distribution of glandular hairs, and essential oil production in Ocimum basilicum L. var. Genovese. Mycorrhiza 16: pp. 485-494 CrossRef
    20. Copetta A, Lingua G, D鈥橝gostino G, Berta G (2010) Arbuscular mycorrhizae affect melon fruit quality under field conditions. MycoMED 2010: 鈥淢ycorrhiza Symbiosis: Ecosystems and Environment of Mediterranean Area鈥? Marrakech
    21. Copetta, A, Bardi, L, Bertolone, E, Berta, G (2011) Fruit production and quality of tomato plants (Solanum lycopersicum L.) are affected by green compost and arbuscular mycorrhizal fungi. Plant Biosyst 145: pp. 106-115 CrossRef
    22. Cordenunsi, B, Oliveira do Nascimento, J, Genovese, M, Lajolo, F (2002) Influence of cultivar on quality parameters and chemical composition of strawberry fruits grown in Brazil. J Agric Food Chem 50: pp. 2581-2586 CrossRef
    23. Cruz-Rus, E, Amaya, I, Sanchez-Sevilla, J, Botella, MA, Valpuesta, V, Sanchez-Sevilla, JF (2011) Regulation of L-ascorbic acid content in strawberry fruits. J Exp Bot 62: pp. 4191-4201 CrossRef
    24. Danneberg, G, Latus, C, Zimmer, W, Hundeshagen, B, Schneider-Poetsch, HJ, Bothe, H (1993) Influence of vesicular-arbuscular mycorrhiza on phytohormone balances in maize (Zea mays L.). J Plant Physiol 141: pp. 33-39 CrossRef
    25. Brito Alvarez, M, Gagn茅, S, Antoun, H (1995) Effect of compost on rhizosphere microflora of the tomato and on the incidence of plant-growth promoting rhizobacteria. Appl Environ Microbiol 61: pp. 194-199
    26. Jong, M, Wolters-Arts, M, Feron, R, Mariani, C, Vriezen, WH (2009) The Solanum lycopersicum auxin response factor 7 (SlARF7) regulates auxin signaling during tomato fruit set and development. Plant J 57: pp. 160-170 CrossRef
    27. Doumett, S, Fibbi, D, Cincinelli, A, Giordani, E, Nin, S, Del, M (2011) Comparison of nutritional and nutraceutical properties in cultivated fruits of Fragaria vesca L. produced in Italy. Food Res Int 44: pp. 1209-1216 CrossRef
    28. Ghachtouli, N, Martin-Tanguy, J, Paynot, M, Gianinazzi, S (1996) First report of the inhibition of arbuscular mycorrhizal infection of Pisum sativum by specific and irreversible inhibition of polyamine biosynthesis or by gibberellic acid treatment. FEBS Lett 385: pp. 189-192 CrossRef
    29. Erturk, Y, Ercilsi, S, Cakmakci, R (2012) Yield and growth response of strawberry to plant growth-promoting rhizobacteria inoculation. J Plant Nutr 35: pp. 817-826 CrossRef
    30. Esitken, A, Yildiz, HE, Ercisli, S, Figen Donmez, M, Turan, M, Gunes, A (2010) Effects of plant growth promoting bacteria (PGPB) on yield, growth and nutrient contents of organically grown strawberry. Sci Hortic 124: pp. 62-66 CrossRef
    31. Faedi W (2010) Fragola nel mondo. In: ART spa (ed) La Fragola. Bologna, pp 358鈥?61
    32. Floss, DS, Levy, JG, L茅vesque-Tremblay, V, Pumplin, N, Harrison, MJ (2013) DELLA proteins regulate arbuscule formation in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA 110: pp. E5025-E5034 CrossRef
    33. Foo, E, Ross, JJ, Jones, WT, Reid, JB (2013) Plant hormones in arbuscular mycorrhizal symbioses: an emerging role for gibberellins. Ann Bot 111: pp. 769-779 CrossRef
    34. Gamalero, E, Glick, B Mechanisms used by plant growth-promoting bacteria. In: Maheshwari, D eds. (2011) Bacteria in agrobiology. Plant nutrient managing. Springer, Berlin, pp. 17-46 CrossRef
    35. Gaur, A, Gaur, A, Adholeya, A (2000) Growth and flowering in Petunia hybrida, Callistephus chinensis and Impatiens balsamina inoculated with mixed AM inocula or chemical fertilizers in a soil of low P fertility. Sci Hortic 84: pp. 151-162 CrossRef
    36. Gianinazzi, S, Gollotte, A, Binet, M, Tuinen, D, Redecher, D, Wipf, D (2010) Agroecology. The role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20: pp. 519-530 CrossRef
    37. Glick, B (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 143: pp. 3921-3931
    38. Goldstein, A (1986) Bacterial solubilization of mineral phosphates: historical perspective and future prospect. Am J Altern Agric 1: pp. 51-57
    39. Gravel, V, Antoun, H, Tweddell, R (2007) Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: possible role of indole acetic acid (IAA). Soil Biol Biochem 39: pp. 1968-1977 CrossRef
    40. Gryndler, M, Vosatka, M, Hrselova, H, Catska, V, Chvatalova, I, Jansa, J (2002) Effect of dual inoculation with arbuscular mycorrhizal fungi and bacteria on growth and mineral nutrition of strawberry. J Plant Nutr 25: pp. 1341-1358 CrossRef
    41. Guerrieri, E, Lingua, G, Digilio, MC, Massa, N, Berta, G (2004) Do interactions between plant roots and the rhizosphere affect parasitoid behaviour?. Ecol Entomol 29: pp. 753-756 CrossRef
    42. Hanson, AD, Gregory, JF (2011) Folate biosynthesis, turnover, and transport in plants. Annu Rev Plant Biol 62: pp. 105-125 CrossRef
    43. Harrier, L, Watson, C (2003) The role of arbuscular mycorrhizal fungi in sustainable cropping systems. Adv Agron 79: pp. 185-225 CrossRef
    44. Hortyfiski, JA, Zebrowska, J, Gawrofiski, J, Hulewicz, T (1991) Factors influencing fruit size in the strawberry (Fragaria 脳 ananassa Duch.). Euphytica 56: pp. 67-74
    45. Hrselova H, Grindler H, Vancura V (1989) Influence of inoculation with VA mycorrhizal fungus / Glomus sp. on growth of strawberries and runner formation. In: Agriculture Ecosystems and Environment. Elsevier Science Publishers B.V., Amsterdam, pp 193鈥?97
    46. Jentschel, K, Thiel, D, Rehn, F, Ludwig-M眉ller, J (2007) Arbuscular mycorrhiza enhances auxin levels and alters auxin biosynthesis in Tropaeolum majus during early stages of colonization. Physiol Plant 129: pp. 320-333 CrossRef
    47. Kallio, H, Hakala, M, Pelkkikangas, A, Lapvetelainen, A (2000) Sugars and acids of strawberry varieties. Eur Food Res Technol 212: pp. 81-85 CrossRef
    48. Kapulnik, Y, Tsror, L, Zipori, I, Hazanovsky, M, Wininger, S, Dag, A (2010) Effect of AMF application on growth, productivity and susceptibility to Verticillium wilt of olives grown under desert conditions. Symbiosis 52: pp. 103-111 CrossRef
    49. Keutgen, A, Pawelzik, E (2007) Food chemistry modifications of taste-relevant compounds in strawberry fruit under NaCl salinity. Food Chem 105: pp. 1487-1494 CrossRef
    50. Koide, R, Lu, X (1992) Mycorrhizal infection of wild oats: maternal effects on offspring growth and reproduction. Oecologia 90: pp. 218-226 CrossRef
    51. Lingua, G, Bona, E, Todeschini, V, Cattaneo, C, Marsano, F, Berta, G, Cavaletto, M (2012) Effects of heavy metals and arbuscular mycorrhiza on the leaf proteome of a selected poplar clone: a time course analysis. PLoS ONE 7: pp. e38662 CrossRef
    52. Lingua, G, Bona, E, Manassero, P, Marsano, F, Todeschini, V, Cantamessa, S, Copetta, A, D鈥橝gostino, G, Gamalero, E, Berta, G (2013) Arbuscular mycorrhizal fungi and plant growth-promoting pseudomonads increases anthocyanin concentration in strawberry fruits (Fragaria 脳 ananassa var. Selva) in conditions of reduced fertilization. Int J Mol Sci 14: pp. 16207-16225 CrossRef
    53. Lu, X, Koide, RT (1994) The effects of mycorrhizal infection on components of plant growth and reproduction. New Phytol 128: pp. 211-218 CrossRef
    54. Ludwig-M眉ller, J, Kaldorf, M, Sutter, EG, Epstein, E (1997) Indole-3-butyric acid (IBA) is enhanced in young maize (Zea mays L.) roots colonized with the arbuscular mycorrhizal fungus Glomus intraradices. Plant Sci 125: pp. 153-162 CrossRef
    55. Mia, M, Shamsuddin, Z, Mahmood, M (2010) Use of plant growth promoting bacteria in banana: a new insight for sustainable banana production. Int J Agric Biol 12: pp. 459-467
    56. Narayanan, KR, Mudge, KW, Poovaiah, BW (1981) Demonstration of auxin binding to strawberry fruit membranes. Plant Physiol 68: pp. 1289-1293 CrossRef
    57. Nzanza, B, Marais, D, Soundy, P (2012) Yield and nutrient content of tomato (Solanum lycopersicum L.) as influenced by Trichoderma harzianum and Glomus mosseae inoculation. Sci Hortic 144: pp. 55-59 CrossRef
    58. Ortu, G, Balestrini, R, Pereira, PA, Becker, JD, K眉ster, H, Bonfante, P (2012) Plant genes related to gibberellin biosynthesis and signaling are differentially regulated during the early stages of AM fungal interactions. Mol Plant 5: pp. 951-954 CrossRef
    59. Perez, G, Olias, R, Espada, J, Olias, JM, Sanz, C (1997) Rapid determination of sugars, nonvolatile acids, and ascorbic acid in strawberry and other fruits. J Agric Food Chem 45: pp. 3545-3549 CrossRef
    60. Perkins-Veazie, P, Collins, J (1995) Strawberry fruit quality and its maintenance in postharvest environments. Adv Strawberry Res 14: pp. 1-8
    61. Pirlak, L, Kose, M (2009) Effects of plant growth promoting rhizobacteria on yield and some fruit properties of strawberry. J Plant Nutr 32: pp. 1173-1184 CrossRef
    62. Poulton, JL, Bryla, D, Koide, RT, Stephenson, AG (2002) Mycorrhizal infection and high soil phosphorus improve vegetative growth and the female and male functions in tomato. New Phytol 154: pp. 255-264 CrossRef
    63. Rolland, F, Baena-Gonzalez, E, Sheen, J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57: pp. 675-709 CrossRef
    64. Salvioli, A, Zouari, I, Chalot, M, Bonfante, P (2012) The arbuscular mycorrhizal status has an impact on the transcriptome profile and amino acid composition of tomato fruit. BMC Plant Biol 12: pp. 44 CrossRef
    65. Scagel, C (2004) Inoculation with vesicular-arbuscular mycorrhizal fungi and rhizobacteria alters nutrient allocation and flowering of Harlequin flower. Horticult Technol 14: pp. 39-48
    66. Schwyn, B, Neilands, J (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160: pp. 47-56 CrossRef
    67. Seeram, N Berries. In: Heber, D, Blackburn, G, Go, V eds. (2006) Nutritional oncology. Academic, London, pp. 615-628 CrossRef
    68. Serrani, JC, Fos, M, Atar茅s, A, Garc铆a-Mart铆nez, JL (2007) Effect of gibberellin and auxin on parthenocarpic fruit growth induction in the cv Micro-Tom of tomato. J Plant Growth Regul 26: pp. 211-221 CrossRef
    69. Sharma, RR, Singh, R (2009) Gibberellic acid influences the production of malformed and button berries, and fruit yield and quality in strawberry (Fragaria 脳 ananassa Duch.). Sci Hortic 19: pp. 430-433 CrossRef
    70. Shaul-Keinan, O, Gadkar, V, Ginzberg, I, Gr眉nzweig, JM, Chet, I, Elad, Y, Wininger, S, Belausov, E, Eshed, Y, Atzmon, N, Ben-Tal, Y, Kapulnik, Y (2002) Hormone concentrations in tobacco roots change during arbuscular mycorrhizal colonization with Glomus intraradices. New Phytol 154: pp. 501-507 CrossRef
    71. Smith, S, Read, D (2008) Mycorrhizal symbiosis. Academic, London
    72. Sturm, K, Koron, D, Stampar, F (2003) The composition of fruit of different strawberry varieties depending on maturity stage. Food Chem 83: pp. 417-422 CrossRef
    73. Torelli, A, Trotta, A, Acerbi, L, Arcidiacono, G, Berta, G, Branca, C (2000) IAA and ZR content in leek (Allium porrum L.) as influenced by P nutrition and arbuscular mycorrhizae, in relation to plant development. Plant Soil 226: pp. 29-35 CrossRef
    74. V谩zquez-Hern谩ndez, MV, Ar茅valo-Galarza, L, Jaen-Contreras, D, Escamilla-Garc铆a, JL, Mora-Aguilera, A, Hern谩ndez-Castro, E, Cibri谩n-Tovar, J, T茅liz-Ortiz, D (2011) Effect of Glomus mosseae and Entrophospora colombiana on plant growth, production, and fruit quality of 鈥淢aradol鈥?papaya (Carica papaya L.). Sci Hortic 128: pp. 255-260 CrossRef
    75. Wang, C, Li, X, Zhou, J, Wang, G, Dong, Y (2008) Effects of arbuscular mycorrhizal fungi on growth and yield of cucumber plants. Commun Soil Sci Plant 39: pp. 499-509 CrossRef
    76. Weisburg, WG, Barns, SM, Pelletier, DA, Lane, DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173: pp. 697-703
    77. Yao, Q, Zhu, HH, Chen, JZ (2005) Growth responses and endogenous IAA and iPAs changes of litchi (Litchi chinensis Sonn.) seedlings induced by arbuscular mycorrhizal fungal inoculation. Sci Hortic 105: pp. 145-151 CrossRef
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Microbiology
    Plant Sciences
    Ecology
    Agriculture
    Forestry
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-1890
文摘
There is increasing interest in the quality of crops because of the implications concerning health, economic revenue, and food quality. Here we tested if inoculation with a mixture of arbuscular mycorrhizal fungi (AMF) and/or two strains of plant growth-promoting bacteria (PGPB), in conditions of reduced chemical inputs, affects the quality and yield of strawberry fruits. Fruit quality was measured by concentrations of soluble sugars, various organic acids, and two vitamins (ascorbic and folic acid). Co-inoculation with the AMF and each of the two PGPB resulted in increased flower and fruit production, larger fruit size, and higher concentrations of sugars and ascorbic and folic acid in comparison with fruits of uninoculated plants. These results provide further evidence that rhizospheric microorganisms affect fruit crop quality and show that they do so even under conditions of reduced chemical fertilization and can thus be exploited for sustainable agriculture.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700