Widespread uncoupling between transcriptome and translatome variations after a stimulus in mammalian cells
详细信息    查看全文
  • 作者:Toma Tebaldi (1) (2)
    Angela Re (1)
    Gabriella Viero (1) (3)
    Ilaria Pegoretti (1)
    Andrea Passerini (2)
    Enrico Blanzieri (2)
    Alessandro Quattrone (1) (2)
  • 关键词:Polysomal ; Profiling ; Transcriptome ; Translational ; Control ; Translatome
  • 刊名:BMC Genomics
  • 出版年:2012
  • 出版时间:December 2012
  • 年:2012
  • 卷:13
  • 期:1
  • 全文大小:1066KB
  • 参考文献:1. Terman SA: Relative effect of transcription-level and translation-level control of protein synthesis during early development of the sea urchin. / Proc Natl Acad Sci USA 1970, 65:985鈥?92. CrossRef
    2. Gurdon JB, Lane CD, Woodland HR, Marbaix G: Use of frog eggs and oocytes for the study of messenger RNA and its translation in living cells. / Nature 1971, 233:177鈥?82. CrossRef
    3. Groppo R, Richter JD: Translational control from head to tail. / Curr Opin Cell Biol 2009, 21:444鈥?51. CrossRef
    4. Jackson RJ, Hellen CU, Pestova TV: The mechanism of eukaryotic translation initiation and principles of its regulation. / Nat Rev Mol Cell Biol 2010, 11:113鈥?27. CrossRef
    5. Djuranovic S, Nahvi A, Green R: A Parsimonious Model for Gene Regulation by miRNAs. / Science 2011, 331:550鈥?53. CrossRef
    6. Fabian MR, Sundermeier TR, Sonenberg N: Understanding how miRNAs post-transcriptionally regulate gene expression. / Prog Mol Subcell Biol 2010, 50:1鈥?0. CrossRef
    7. Kozomara A, Griffiths-Jones S: miRBase: integrating microRNA annotation and deep-sequencing data. / Nucleic Acids Res 2010, 39:152鈥?57. CrossRef
    8. Gardner PP, Daub J, Tate JG, Nawrocki EP, Kolbe DL, Lindgreen S, Wilkinson AC, Finn RD, Griffiths-Jones S, Eddy SR, Bateman A: Rfam: updates to the RNA families database. / Nucleic Acids Res 2009, 37:D136鈥?40. CrossRef
    9. Karro JE, Yan Y, Zheng D, Zhang Z, Carriero N, Cayting P, Harrrison P, Gerstein M: Pseudogene.org: a comprehensive database and comparison platform for pseudogene annotation. / Nucleic Acids Res 2007, 35:55鈥?0. CrossRef
    10. Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP: A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. / Nature 2010, 465:1033鈥?038. CrossRef
    11. Bashkirov VI, Scherthan H, Solinger JA, Buerstedde JM, Heyer WD: A mouse cytoplasmic exoribonuclease (mXRN1p) with preference for G4 tetraplex substrates. / J Cell Biol 1997, 136:761鈥?73. CrossRef
    12. Sheth U, Parker R: Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. / Science 2003, 300:805鈥?08. CrossRef
    13. Anderson P, Kedersha N: RNA granules: post-transcriptional and epigenetic modulators of gene expression. / Nat Rev Mol Cell Biol 2009, 10:430鈥?36. CrossRef
    14. Coller J, Parker R: General translational repression by activators of mRNA decapping. / Cell 2005, 122:875鈥?86. CrossRef
    15. Brengues M, Teixeira D, Parker R: Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies. / Science 2005, 310:486鈥?89. CrossRef
    16. Balagopal V, Parker R: Polysomes, P bodies and stress granules: states and fates of eukaryotic mRNAs. / Curr Opin Cell Biol 2009, 21:403鈥?08. CrossRef
    17. Melamed D, Eliyahu E, Arava Y: Exploring translation regulation by global analysis of ribosomal association. / Methods 2009, 48:301鈥?05. CrossRef
    18. Johnston JB, Navaratnam S, Pitz MW, Maniate JM, Wiechec E, Baust H, Gingerich J, Skliris GP, Murphy LC, Los M: Targeting the EGFR pathway for cancer therapy. / Curr Med Chem 2006, 13:3483鈥?492. CrossRef
    19. Yarden Y, Shilo BZ: SnapShot: EGFR signaling pathway. / Cell 2007, 131:1018鈥?018. CrossRef
    20. Burgering BM, Coffer PJ: Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. / Nature 1995, 376:599鈥?02. CrossRef
    21. Marais R, Wynne J, Treisman R: The SRF accessory protein Elk-1 contains a growth factor-regulated transcriptional activation domain. / Cell 1993, 73:381鈥?93. CrossRef
    22. Curran T, Bravo R, M眉ller R: Transient induction of c-fos and c-myc in an immediate consequence of growth factor stimulation. / Cancer Surv 1985, 4:655鈥?81.
    23. Hong F, Breitling R, McEntee CW, Wittner BS, Nemhauser JL, Chory J: RankProd: a bioconductor package for detecting differentially expressed genes in meta-analysis. / Bioinformatics 2006, 22:2825鈥?827. CrossRef
    24. Wu CH, Huang H, Arminski L, Castro-Alvear J, Chen Y, Hu ZZ, Ledley RS, Lewis KC, Mewes HW, Orcutt BC, Suzek BE, Tsugita A, Vinayaka CR, Yeh LS, Zhang J, Barker WC: The Protein Information Resource: an integrated public resource of functional annotation of proteins. / Nucleic Acids Res 2002, 30:35鈥?7. CrossRef
    25. Hunter S, / et al.: InterPro: the integrative protein signature database. / Nucleic Acids Res 2009, 37:D211-D215. CrossRef
    26. Tatusov RL, Galperin MY, Natale DA, Koonin EV: The COG database: a tool for genome-scale analysis of protein functions and evolution. / Nucleic Acids Res 2000, 28:33鈥?6. CrossRef
    27. Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M: KEGG for representation and analysis of molecular networks involving diseases and drugs. / Nucleic Acids Res 2010, 38:D355鈥?60. CrossRef
    28. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G: Gene Ontology: tool for the unification of biology. / Nat Genet 2000, 25:25鈥?9. CrossRef
    29. Tusher VG, Tibshirani R, Chu G: Significance analysis of microarrays applied to the ionizing radiation response. / Proc Natl Acad Sci USA 2001, 98:5116鈥?121. CrossRef
    30. Harris MA, / et al.: The Gene Ontology (GO) database and informatics resource. / Nucleic Acids Res 2004, 32:D258-D261. CrossRef
    31. Lackner DH, Beilharz TH, Marguerat S, Mata J, Watt S, Schubert F, Preiss T, B盲hler J: A network of multiple regulatory layers shapes gene expression in fission yeast. / Mol Cell 2007, 26:145鈥?55. CrossRef
    32. Ray BK, Brendler TG, Adya S, Daniels-McQueen S, Miller JK, Hershey JW, Grifo JA, Merrick WC, Thach RE: Role of mRNA competition in regulating translation: further characterization of mRNA discriminatory initiation factors. / Proc Natl Acad Sci USA 1983, 80:663鈥?67. CrossRef
    33. Chu D, Barnes DJ, von der Haar T: The role of tRNA and ribosome competition in coupling the expression of different mRNAs in Saccharomyces cerevisiae. / Nucleic Acids Res 2011, 39:6705鈥?714. CrossRef
    34. Proweller A, Butler JS: Ribosome concentration contributes to discrimination against poly(A)- mRNA during translation initiation in Saccharomyces cerevisiae. / J Biol Chem 1997, 272:6004鈥?010. CrossRef
    35. Rosen H, Di Segni G, Kaempfer R: Translational control by messenger RNA competition for eukaryotic initiation factor 2. / J Biol Chem 1982, 257:946鈥?52.
    36. Crick F: / Central dogma of molecular biology. Nature. 1970, 227:561鈥?63.
    37. Sonenberg N, Hinnebusch AG: Regulation of translation initiation in eukaryotes: mechanisms and biological targets. / Cell 2009, 136:731鈥?45. CrossRef
    38. Parker R, Sheth U: P bodies and the control of mRNA translation and degradation. / Mol Cell 2007, 25:635鈥?46. CrossRef
    39. Meyuhas O: Synthesis of the translational apparatus is regulated at the translational level. / Eur J Biochem 2000, 267:6321鈥?330. CrossRef
    40. Pullmann R, Kim HH, Abdelmohsen K, Lal A, Martindale JL, Yang X, Gorospe M: Analysis of turnover and translation regulatory RNA-binding protein expression through binding to cognate mRNAs. / Mol Cell Biol 2007, 27:6265鈥?278. CrossRef
    41. Mittal N, Scherrer T, Gerber AP, Janga SC: Interplay between Posttranscriptional and Posttranslational Interactions of RNA-Binding Proteins. / J Mol Biol 2011, 409:466鈥?79. CrossRef
    42. Kuersten S, Goodwin EB: The power of the 3鈥?UTR: translational control and development. / Nat Rev Genet 2003, 4:626鈥?37. CrossRef
    43. Keene JD: RNA regulons: coordination of post-transcriptional events. / Nat Rev Genet 2007, 8:533鈥?43. CrossRef
    44. Mansfield KD, Keene JD: The ribonome: a dominant force in co-ordinating gene expression. / Biol Cell 2009, 101:169鈥?81. CrossRef
    45. De Sousa Abreu R, Penalva LO, Marcotte EM, Vogel C: Global signatures of protein and mRNA expression levels. / Mol BioSyst 2009, 5:1512鈥?526.
    46. Maier T, G眉ell M, Serrano L: Correlation of mRNA and protein in complex biological samples. / FEBS Lett 2009, 583:3966鈥?973. CrossRef
    47. Vogel C, Abreu Rde S, Ko D, Le SY, Shapiro BA, Burns SC, Sandhu D, Boutz DR, Marcotte EM, Penalva LO: Sequence signatures and mRNA concentration can explain two-thirds of protein abundance variation in a human cell line. / Mol Syst Biol 2010, 6:400. CrossRef
    48. Schwanh盲usser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M: Global quantification of mammalian gene expression control. / Nature 2011, 473:337鈥?42. CrossRef
    49. Laurent JM, Vogel C, Kwon T, Craig SA, Boutz DR, Huse HK, Nozue K, Walia H, Whiteley M, Ronald PC, Marcotte EM: Protein abundances are more conserved than mRNA abundances across diverse taxa. / Proteomics 2010, 10:4209鈥?212. CrossRef
    50. Smirnova JB, Selley JN, Sanchez-Cabo F, Carroll K, Eddy AA, McCarthy JE, Hubbard SJ, Pavitt GD, Grant CM, Ashe MP: Global gene expression profiling reveals widespread yet distinctive translational responses to different eukaryotic translation initiation factor 2B-targeting stress pathways. / Mol Cell Biol 2005, 25:9340鈥?349. CrossRef
    51. Preiss T, Baron-Benhamou J, Ansorge W, Hentze MW: Homodirectional changes in transcriptome composition and mRNA translation induced by rapamycin and heat shock. / Nat Struct Biol 2003, 10:1039鈥?047. CrossRef
    52. Melamed D, Pnueli L, Arava Y: Yeast translational response to high salinity : Global analysis reveals regulation at multiple levels. / RNA 2008, 14:1337鈥?351. CrossRef
    53. Halbeisen RE, Gerber AP: Stress-Dependent Coordination of Transcriptome and Translatome in Yeast. / PLoS Biol 2009, 7:e105. CrossRef
    54. Stefl R, Skrisovska L, Allain FH: RNA sequence-and shape-dependent recognition by proteins in the ribonucleoprotein particle. / EMBO Rep 2005, 6:33鈥?8. CrossRef
    55. Arvey A, Larsson E, Sander C, Leslie CS, Marks DS: Target mRNA abundance dilutes microRNA and siRNA activity. / Mol Syst Biol 2010, 6:363鈥?69. CrossRef
    56. Raj A, Peskin CS, Tranchina D, Vargas DY, Tyagi S: Stochastic mRNA synthesis in mammalian cells. / PLoS Biol 2006, 4:e309. CrossRef
    57. Suter DM, Molina N, Gatfield D, Schneider K, Schibler U, Naef F: Mammalian genes are transcribed with widely different bursting kinetics. / Science 2011, 472:472鈥?74. CrossRef
    58. Wolffe AP, Meric F: Coupling transcription to translation: a novel site for the regulation of eukaryotic gene expression. / Int J Biochem Cell Biol 1996, 28:247鈥?57. CrossRef
    59. Marr MT, D鈥橝lessio JA, Puig O, Tjian R: IRES-mediated functional coupling of transcription and translation amplifies insulin receptor feedback. / Genes Dev 2007, 21:175鈥?83. CrossRef
    60. Bolstad BM, Irizarry RA, Astrand M, Speed TP: A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. / Bioinformatics 2003, 19:185鈥?93. CrossRef
    61. da Huang W, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. / Nat Protoc 2009, 4:44鈥?7. CrossRef
    62. Wang JZ, Du Z, Payattakool R, Yu PS, Chen CF: A new method to measure the semantic similarity of GO terms. / Bioinformatics 2007, 23:1274鈥?281. CrossRef
  • 作者单位:Toma Tebaldi (1) (2)
    Angela Re (1)
    Gabriella Viero (1) (3)
    Ilaria Pegoretti (1)
    Andrea Passerini (2)
    Enrico Blanzieri (2)
    Alessandro Quattrone (1) (2)

    1. Laboratory of Translational Genomics, Centre for Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
    2. Department of Information Engineering and Computer Science (DISI), University of Trento, 38123, Trento, Italy
    3. National Research Council, Institute of Biophysics & Bruno Kessler Foundation, 38123, Trento, Italy
文摘
Background The classical view on eukaryotic gene expression proposes the scheme of a forward flow for which fluctuations in mRNA levels upon a stimulus contribute to determine variations in mRNA availability for translation. Here we address this issue by simultaneously profiling with microarrays the total mRNAs (the transcriptome) and the polysome-associated mRNAs (the translatome) after EGF treatment of human cells, and extending the analysis to other 19 different transcriptome/translatome comparisons in mammalian cells following different stimuli or undergoing cell programs. Results Triggering of the EGF pathway results in an early induction of transcriptome and translatome changes, but 90% of the significant variation is limited to the translatome and the degree of concordant changes is less than 5%. The survey of other 19 different transcriptome/translatome comparisons shows that extensive uncoupling is a general rule, in terms of both RNA movements and inferred cell activities, with a strong tendency of translation-related genes to be controlled purely at the translational level. By different statistical approaches, we finally provide evidence of the lack of dependence between changes at the transcriptome and translatome levels. Conclusions We propose a model of diffused independency between variation in transcript abundances and variation in their engagement on polysomes, which implies the existence of specific mechanisms to couple these two ways of regulating gene expression.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700