Stability Inequalities for Projections of Convex Bodies
详细信息    查看全文
  • 作者:Alexander Koldobsky
  • 关键词:Convex body ; Projection ; Fourier transform ; Distribution
  • 刊名:Discrete & Computational Geometry
  • 出版年:2017
  • 出版时间:January 2017
  • 年:2017
  • 卷:57
  • 期:1
  • 页码:152-163
  • 全文大小:
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Combinatorics; Computational Mathematics and Numerical Analysis;
  • 出版者:Springer US
  • ISSN:1432-0444
  • 卷排序:57
文摘
The projection function \(P_K\) of an origin-symmetric convex body K in \({{\mathbb {R}}}^n\) is defined by \(P_K(\xi )=|K\vert {\xi ^\bot }|,\ \xi \in S^{n-1},\) where \(K\vert {\xi ^\bot }\) is the projection of K to the central hyperplane \(\xi ^\bot \) perpendicular to \(\xi \), and |K| stands for volume of proper dimension. We prove several stability and separation results for the projection function. For example, if D is a projection body in \({{\mathbb {R}}}^n\) which is in isotropic position up to a dilation, and K is any origin-symmetric convex body in \({{\mathbb {R}}}^n\) such that that there exists \(\xi \in S^{n-1}\) with \(P_K(\xi )>P_D(\xi ),\) then $$\begin{aligned} \max _{\xi \in S^{n-1}} (P_K(\xi )-P_D(\xi )) \ge \frac{c}{\log ^2n} \big (|K|^{\frac{n-1}{n}} -|D|^{\frac{n-1}{n}}\big ), \end{aligned}$$where c is an absolute constant. As a consequence, we prove a hyperplane inequality $$\begin{aligned} S(D) \le \ C \log ^2n \max _{\xi \in S^{n-1}} S(D\vert \xi ^\bot )\ |D|^{\frac{1}{n}}, \end{aligned}$$where D is a projection body in isotropic position, up to a dilation, S(D) is the surface area of \(D,S(D\vert \xi ^\bot )\) is the surface area of the body \(D\vert \xi ^\bot \) in \({{\mathbb {R}}}^{n-1},\) and C is an absolute constant. The proofs are based on the Fourier analytic approach to projections developed in [12].KeywordsConvex bodyProjectionFourier transformDistributionEditor in Charge: Günter M. Ziegler

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700