Determinantal representations and Bézoutians
详细信息    查看全文
文摘
A major open question in convex algebraic geometry is whether all hyperbolicity cones are spectrahedral, i.e. the solution sets of linear matrix inequalities. We will use sum-of-squares decompositions of certain bilinear forms called Bézoutians to approach this problem. More precisely, we show that for every smooth hyperbolic polynomial h there is another hyperbolic polynomial q such that \(q \cdot h\) has a definite determinantal representation. Besides commutative algebra, the proof relies on results from real algebraic geometry.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700