Removal and Recovery of Chromium from Aqueous Solutions by Reduction-Absorption Microreactor
详细信息    查看全文
  • 作者:Meng Jiang ; Yun Qi ; Yuan-Lu Cui ; Lin Zhao ; Shejiang Liu
  • 关键词:Alginate ; Cr(VI) ; Rutin ; Reduction ; adsorption microreactor
  • 刊名:Water, Air, & Soil Pollution
  • 出版年:2017
  • 出版时间:January 2017
  • 年:2017
  • 卷:228
  • 期:1
  • 全文大小:
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment, general; Water Quality/Water Pollution; Atmospheric Protection/Air Quality Control/Air Pollution; Soil Science & Conservation; Hydrogeology; Climate Change/Climate Change Impacts;
  • 出版者:Springer International Publishing
  • ISSN:1573-2932
  • 卷排序:228
文摘
A rutin-Cr(III) loaded alginate microspheres, which can act as reduction-adsorption microreactor, was designed to reduce Cr(VI) to Cr(III) and recover it. Different from the rutin-Cr(III) complex in alginate-chitosan microcapsule we previously reported, which can sustained release rutin-Cr(III) and reduce Cr(VI) to Cr(III), this microreactor can not only reduce Cr(VI) but also adsorb/recover Cr(III) in aqueous solution. This microreactor was prepared by loading metal complex of rutin into alginate microsphere. It was found that Cr(VI) was initially reduced to Cr(III) by rutin-Cr(III), and then the product Cr(III) was absorbed in the microspheres. Both Cr(VI) reduction rate and Cr(III) adsorption rate were pH-dependent. Cr(VI) can be completely reduced to Cr(III) at pH 1–4 with a reduction capability of 1.27 (±0.078) mmol/g (pH 1, 4 h). The highest blank alginate microsphere adsorption capacity was 1.82 (±0.042) mmol/g at pH 4. It was assumed that reduction-adsorption was the mechanism of total Cr removal by the reduction-absorption microreactor. Recovery experiment showed that 93% and 98% of Cr(III) can be recovered by EDTA and sodium citrate, respectively.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700