Non-singular rotating black hole with a time delay in the center
详细信息    查看全文
  • 作者:Tommaso De Lorenzo ; Andrea Giusti ; Simone Speziale
  • 关键词:Non ; singular black holes ; Newman–Janis algorithm ; Violations of weak energy condition
  • 刊名:General Relativity and Gravitation
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:48
  • 期:3
  • 全文大小:1,422 KB
  • 参考文献:1.Hayward, S.A.: Formation and evaporation of regular black holes. Phys. Rev. Lett. 96, 31103 (2006). arxiv:​gr-qc/​0506126 ADS CrossRef
    2.Frolov, V. P.: Information loss problem and a ‘black hole’ model with a closed apparent horizon. (2014). arXiv:​1402.​5446
    3.Hossenfelder, S., Smolin, L.: Conservative solutions to the black hole information problem. Phys. Rev. D81 (2010). arxiv:​0901.​3156
    4.Barrau, A., Rovelli, C.: Planck star phenomenology. Phys. Lett. B 739, 405 (2014). arXiv:​1404.​5821 ADS CrossRef
    5.Barrau, A., Rovelli, C., Vidotto, F.: Fast radio bursts and white hole signals. Phys. Rev. D90(12), 127503 (2014). arXiv:​1409.​4031 ADS
    6.Barrau, A., Bolliet, B., Vidotto, F., Weimer, C.: Phenomenology of bouncing black holes in quantum gravity: a closer look. arxiv:​1507.​05424
    7.Bardeen, J.M.: Non-singular general-relativistic gravitational collapse. In: Fock, V. A., et al. (eds.) GR5, Abstracts of the 5th international conference on gravitation and the theory of relativity. University Press, Tbilisi, 9–13 September 1968
    8.Frolov, V.P., Vilkovisky, G.A.: Spherically symmetric collapse in quantum gravity. Phys. Lett. B 106, 307–313 (1981)ADS MathSciNet CrossRef
    9.Roman, T.A., Bergmann, P.G.: Stellar collapse without singularities? Phys. Rev. D 28, 1265–1277 (1983)ADS MathSciNet CrossRef
    10.Casadio, R.: Quantum gravitational fluctuations and the semiclassical limit. Int. J. Mod. Phys D9, 511–529 (2000). arXiv:​gr-qc/​9810073 ADS
    11.Mazur, P.O., Mottola, E.: Gravitational condensate stars: an alternative to black holes. arxiv:​gr-qc/​0109035
    12.Dymnikov, I.: Cosmological term as a source of mass. Class. Quant. Grav. 19, 725–740 (2002). arXiv:​gr-qc/​0112052 ADS MathSciNet CrossRef
    13.Visser, M., Barcelo, C., Liberati, S., Sonego, S.: Small, dark, and heavy: But is it a black hole? arXiv:​0902.​0346 . [PoSBHGRS,010(2008)]
    14.Falls, K., Litim, D.F., Raghuraman, A.: Black holes and asymptotically safe gravity. Int. J. Mod. Phys. A 27, 1250019 (2012). arXiv:​1002.​0260 ADS MathSciNet CrossRef MATH
    15.Modesto, L., Nicolini, P.: Charged rotating noncommutative black holes. Phys. Rev. D 82, 104035 (2010). arXiv:​1005.​5605 ADS CrossRef
    16.Bambi, C., Modesto, L.: Rotating regular black holes. Phys. Lett. B 721, 329–334 (2013). arXiv:​1302.​6075 ADS MathSciNet CrossRef MATH
    17.Bambi, C., Malafarina, D., Modesto, L.: Non-singular quantum-inspired gravitational collapse. Phys. Rev. D 88, 044009 (2013). arXiv:​1305.​4790 ADS CrossRef
    18.Haggard, H.M., Rovelli, C.: Black hole fireworks: quantum-gravity effects outside the horizon spark black to white hole tunneling. arxiv:​1407.​0989
    19.Mersini-Houghton, L.: Backreaction of hawking radiation on a gravitationally collapsing star i: Black holes?, PLB30496 Phys. Lett. B, 16 September 2014 (06, 2014). arxiv:​1406.​1525
    20.De Lorenzo, T., Pacilio, C., Rovelli, C., Speziale, S.: On the effective metric of a Planck star. Gen. Relativ. Gravit. 47(4), 41 (2015). arXiv:​1412.​6015 ADS MathSciNet CrossRef MATH
    21.Ayon-Beato, E., Garcia, A.: The Bardeen model as a nonlinear magnetic monopole. Phys. Lett. B493, 149–152 (2000). arXiv:​gr-qc/​0009077 ADS MathSciNet CrossRef MATH
    22.Falls, K., Litim, D.F., Raghuraman, A.: Black holes and asymptotically safe gravity. Int. J. Mod. Phys. A 27, 1250019 (2012). arXiv:​1002.​0260 ADS MathSciNet CrossRef MATH
    23.Saueressig, F., Alkofer, N., D’Odorico, G., Vidotto, F.: Black holes in asymptotically safe gravity, PoS FFP14 (2015) 174. arxiv:​1503.​06472
    24.Bambi, C., Malafarina, D., Modesto, L.: Terminating black holes in asymptotically free quantum gravity. Eur. Phys. J. C 74, 2767 (2014). arXiv:​1306.​1668 ADS CrossRef
    25.Frolov, V.P.: Mass-gap for black hole formation in higher derivative and ghost free gravity. Phys. Rev. Lett. 115(5), 051102 (2015). arXiv:​1505.​00492 ADS CrossRef
    26.Modesto, L.: Loop quantum black hole. Class. Quant. Grav. 23, 5587–5602 (2006). arXiv:​gr-qc/​0509078 ADS MathSciNet CrossRef MATH
    27.Ashtekar, A., Bojowald, M.: Black hole evaporation: a paradigm. Class. Quant. Grav. 22, 3349–3362 (2005). arXiv:​gr-qc/​0504029 ADS MathSciNet CrossRef MATH
    28.Ashtekar, A., Pawlowski, T., Singh, P.: Quantum nature of the big bang. Phys. Rev. Lett. 96, 141301 (2006). arXiv:​gr-qc/​0602086 ADS MathSciNet CrossRef MATH
    29.Rovelli, C., Vidotto, F.: Planck stars. Int. J. Mod. Phys. D 23(12), 1442026 (2014). arXiv:​1401.​6562 ADS CrossRef
    30.Newman, E.T., Janis, A.I.: Note on the Kerr spinning particle metric. J. Math. Phys. 6, 915–917 (1965)ADS MathSciNet CrossRef MATH
    31.Caravelli, F., Modesto, L.: Spinning loop black holes. Class. Quant. Grav. 27, 245022 (2010). arXiv:​1006.​0232 ADS MathSciNet CrossRef MATH
    32.Ghosh, S.G., Amir, M.: Horizon structure of rotating Bardeen black hole and particle acceleration. arxiv:​1506.​04382
    33.Bjerrum-Bohr, N.E.J., Donoghue, J.F., Holstein, B.R.: Quantum corrections to the Schwarzschild and Kerr metrics. Phys. Rev. D 68, 084005 (2003). arXiv:​hep-th/​0211071 . [Erratum: Phys. Rev. D71,069904(2005)]ADS MathSciNet CrossRef
    34.Adamo, T., Newman, E.T.: The Kerr–Newman metric: a review. Scholarpedia 9, 31791 (2014). arXiv:​1410.​6626 ADS CrossRef
    35.Drake, S.P., Szekeres, P.: Uniqueness of the Newman–Janis algorithm in generating the Kerr–Newman metric. Gen. Relativ. Gravit. 32, 445–458 (2000). arXiv:​gr-qc/​9807001 ADS MathSciNet CrossRef MATH
    36.Stephani, H., Kramer, D., MacCallum, M.A.H., Hoenselaers, C., Herlt, E.: Exact Solutions of Einstein’s Field Equations. Cambridge University Press, Cambridge (2004)MATH
    37.Debnath, U.: Accretion and evaporation of modified hayward black hole. Eur. Phys. J. C75 (2015), no. 3 129. arxiv:​1503.​01645
    38.Bambi, C.: Testing the Kerr black hole hypothesis. Mod. Phys. Lett. A 26, 2453–2468 (2011). arXiv:​1109.​4256 ADS MathSciNet CrossRef
    39.Bambi, C.: Testing the Bardeen metric with the black hole candidate in Cygnus X-1. Phys. Lett. B 730, 59–62 (2014). arXiv:​1401.​4640 ADS CrossRef
    40.Smailagic, A., Spallucci, E.: ’Kerrr’ black hole: the Lord of the String. Phys. Lett. B 688, 82–87 (2010). arXiv:​1003.​3918 ADS MathSciNet CrossRef
    41.Gibbons, G.W., Hawking, S.W.: Cosmological event horizons, thermodynamics, and particle creation. Phys. Rev. D 15, 2738–2751 (1977)ADS MathSciNet CrossRef
    42.Bardeen, J.M., Press, W.H., Teukolsky, S.A.: Rotating black holes: locally nonrotating frames, energy extraction, and scalar synchrotron radiation. Astrophys. J. 178, 347 (1972)ADS CrossRef
    43.Segre, C.: Sulla teoria e sulla class delle omografie in uno spazio lineare ad un numero qualunque di dimensioni. Transeunti Acc. Lincei VIII(III), 19 (1883–84)
    44.Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space–Time, vol. 1, 20th edn. Cambridge University Press, Cambridge (1973)CrossRef MATH
    45.Neves, J.C.S., Saa, A.: Regular rotating black holes and the weak energy condition. Phys. Lett. B 734, 44–48 (2014). arXiv:​1402.​2694 ADS MathSciNet CrossRef
    46.Perez, A.: No firewalls in quantum gravity: the role of discreteness of quantum geometry in resolving the information loss paradox. Class. Quant. Grav. 32(8), 084001 (2015). arXiv:​1410.​7062 ADS MathSciNet CrossRef MATH
    47.Bianchi, E., De Lorenzo, T., Smerlak, M.: Entanglement entropy production in gravitational collapse: covariant regularization and solvable models. JHEP 06, 180 (2015). arXiv:​1409.​0144 ADS MathSciNet
    48.Smerlak, M.: Black holes and reversibility. Talk given at the International Loop Quantum Gravity Seminar, 2015. web link
    49.De Lorenzo, T.: Investigating Static and Dynamic Non-Singular Black Holes. Master thesis in theoretical physics, University of Pisa, 2014
    50.Carlitz, R.D., Willey, R.S.: The lifetime of a black hole. Phys. Rev. D 36, 2336 (1987)ADS MathSciNet CrossRef
  • 作者单位:Tommaso De Lorenzo (1)
    Andrea Giusti (1) (2)
    Simone Speziale (1)

    1. Centre de Physique Theorique, CNRS-UMR 7332, Aix-Marseille Université & Université de Toulon, Case 907, Campus de Luminy, 13288, Marseille, France
    2. Dip. di Fisica e Astronomia, Università di Bologna, via Irnerio 46, 40126, Bologna, Italy
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Mathematical and Computational Physics
    Relativity and Cosmology
    Differential Geometry
    Quantum Physics
    Astronomy, Astrophysics and Cosmology
  • 出版者:Springer Netherlands
  • ISSN:1572-9532
文摘
As proposed by Bambi and Modesto, rotating non-singular black holes can be constructed via the Newman–Janis algorithm. Here we show that if one starts with a modified Hayward black hole with a time delay in the centre, the algorithm succeeds in producing a rotating metric, but curvature divergences reappear. To preserve finiteness, the time delay must be introduced directly at the level of the non-singular rotating metric. This is possible thanks to the deformation of the inner stationarity limit surface caused by the regularisation, and in more than one way. We outline three different possibilities, distinguished by the angular velocity of the event horizon. Along the way, we provide additional results on the Bambi–Modesto rotating Hayward metric, such as the structure of the regularisation occurring at the centre, the behaviour of the quantum gravity scale alike an electric charge in decreasing the angular momentum of the extremal black hole configuration, or details on the deformation of the ergosphere.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700