HOXB13 is a susceptibility gene for prostate cancer: results from the International Consortium for Prostate Cancer Genetics (ICPCG)
详细信息    查看全文
  • 作者:Jianfeng Xu (1) (2)
    Ethan M. Lange (3) (4)
    Lingyi Lu (1) (2)
    Siqun L. Zheng (1) (2)
    Zhong Wang (1) (2)
    Stephen N. Thibodeau (5) (6)
    Lisa A. Cannon-Albright (7) (8)
    Craig C. Teerlink (7) (8)
    Nicola J. Camp (7) (8)
    Anna M. Johnson (3) (9)
    Kimberly A. Zuhlke (3) (9)
    Janet L. Stanford (10) (11)
    Elaine A. Ostrander (10) (12)
    Kathleen E. Wiley (13) (14)
    Sarah D. Isaacs (13) (14)
    Patrick C. Walsh (13) (14)
    Christiane Maier (15) (16)
    Manuel Luedeke (15) (16)
    Walther Vogel (15) (17)
    Johanna Schleutker (18) (19) (20)
    Tiina Wahlfors (18) (19)
    Teuvo Tammela (18) (21)
    Daniel Schaid (22) (5)
    Shannon K. McDonnell (22) (5)
    Melissa S. DeRycke (5) (6)
    Geraldine Cancel-Tassin (23) (24)
    Olivier Cussenot (23) (50)
    Fredrik Wiklund (25) (26)
    Henrik Gr?nberg (25) (26)
    Ros Eeles (27) (28)
    Doug Easton (27) (29)
    Zsofia Kote-Jarai (27) (28)
    Alice S. Whittemore (30) (31) (32)
    Chih-Lin Hsieh (30) (33)
    Graham G. Giles (27) (34) (35)
    John L. Hopper (27) (34) (35)
    Gianluca Severi (27) (34) (35)
    William J. Catalona (36) (37)
    Diptasri Mandal (38) (39)
    Elisa Ledet (38) (39)
    William D. Foulkes (27) (40) (51)
    Nancy Hamel (27) (40) (51)
    Lovise Mahle (27) (41)
    Pal Moller (27) (41)
    Isaac Powell (42) (43)
    Joan E. Bailey-Wilson (42) (44)
    John D. Carpten (42) (45)
    Daniela Seminara (46)
    Kathleen A. Cooney (3) (9)
    William B. Isaacs (13) (14)
  • 刊名:Human Genetics
  • 出版年:2013
  • 出版时间:January 2013
  • 年:2013
  • 卷:132
  • 期:1
  • 页码:5-14
  • 全文大小:250KB
  • 参考文献:1. Agalliu I, Karlins E, Kwon EM et al (2007) Rare germline mutations in the BRCA2 gene are associated with early-onset prostate cancer. Br J Cancer 97:826-31 CrossRef
    2. Akamatsu S, Takata R, Haiman CA et al (2012) Common variants at 11q12, 10q26 and 3p11.2 are associated with prostate cancer susceptibility in Japanese. Nat Genet 44(426-):S1
    3. Bodmer W, Bonilla C (2008) Common and rare variants in multifactorial susceptibility to common diseases. Nat Genet 40(6):695-01 CrossRef
    4. Carpten J, Nupponen N, Isaacs S et al (2002) Germline mutations in the ribonuclease L gene in families showing linkage with HPC1. Nat Genet 30:181-84 CrossRef
    5. Cropp CD, Simpson CL, Wahlfors T, Ha N, George A, Jones MS, Harper U, Ponciano-Jackson D, Green TA, Tammela TL, Bailey-Wilson J, Schleutker J (2011) Genome-wide linkage scan for prostate cancer susceptibility in Finland: evidence for a novel locus on 2q37.3 and confirmation of signal on 17q21–q22. Int J Cancer 129:2400-407 CrossRef
    6. Edwards SM, Kote-Jarai Z, Meitz J et al (2003) Two percent of men with early-onset prostate cancer harbor germline mutations in the BRCA2 gene. Am J Hum Genet 72:1-2 CrossRef
    7. Eeles RA, Kote-Jarai Z, Giles GG et al (2008) Multiple newly identified loci associated with prostate cancer susceptibility. Nat Genet 40:316-21 CrossRef
    8. Eeles RA, Kote-Jarai Z, Al Olama AA et al (2009) Identification of seven new prostate cancer susceptibility loci through a genome-wide association study. Nat Genet 41:1116-121
    9. Ewing CM, Ray AM, Lange EM et al (2012) Germline mutations in HOXB13 and prostate-cancer risk. N Engl J Med 366:141-49 CrossRef
    10. Gillanders EM, Xu J, Chang BL et al (2004) Combined genome-wide scan for prostate cancer susceptibility genes. J Natl Cancer Inst 96:1240-247 CrossRef
    11. Gudmundsson J, Sulem P, Manolescu A et al (2007a) Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24. Nat Genet 39:631-37 CrossRef
    12. Gudmundsson J, Sulem P, Steinthorsdottir V et al (2007b) Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes. Nat Genet 39:977-83 CrossRef
    13. Gudmundsson J, Sulem P, Rafnar T et al (2008) Common sequence variants on 2p15 and Xp11.22 confer susceptibility to prostate cancer. Nat Genet 40:281-83
    14. Gudmundsson J, Sulem P, Gudbjartsson DF et al (2009) Genome-wide association and replication studies identify four variants associated with prostate cancer susceptibility. Nat Genet 41:1122-126 CrossRef
    15. Haiman CA, Chen GK, Blot WJ et al (2011) Genome-wide association study of prostate cancer in men of African ancestry identifies a susceptibility locus at 17q21. Nat Genet 43:570-73 CrossRef
    16. Iyengar SK, Elston RC (2007) The genetic basis of complex traits: rare variants or “common gene, common disease- Methods Mol Biol 376:71-4 CrossRef
    17. Kote-Jarai Z, Olama AA, Giles GG et al (2011a) Seven prostate cancer susceptibility loci identified by a multi-stage genome-wide association study. Nat Genet 43:785-91 CrossRef
    18. Kote-Jarai Z, Leongamornlert D, Saunders E, Tymrakiewicz M, Castro E, Mahmud N, Guy M, Edwards S, O’Brien L, Sawyer E, Hall A, Wilkinson R, Dadaev T, Goh C, Easton D, UKGPCS Collaborators, Goldgar D, Eeles R (2011b) BRCA2 is a moderate penetrance gene contributing to young-onset prostate cancer: implications for genetic testing in prostate cancer patients. Br J Cancer 105(8):1230-234. doi:10.1038/bjc.2011.383
    19. Kruglyak L, Daly MJ, Reeve-Daly MP, Lander ES (1996) Parametric and nonparametric linkage analysis: a unified multipoint approach. Am J Hum Genet 58:1347-363
    20. Lange EM, Gillanders EM, Davis CC et al (2003) Genome-wide scan for prostate cancer susceptibility genes using families from the University of Michigan prostate cancer genetics project finds evidence for linkage on chromosome 17 near BRCA1. Prostate 57:326-34 CrossRef
    21. Lange EM, Robbins CM, Gillanders EM et al (2007) Fine-mapping the putative chromosome 17q21-2 prostate cancer susceptibility gene to a 10?cM region based on linkage analysis. Hum Genet 121:49-5
    22. Purcell S, Neale B, Todd-Brown K et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559-75 CrossRef
    23. Schaid DJ, Chang BL (2005) Description of the international consortium for prostate cancer genetics, and failure to replicate linkage of hereditary prostate cancer to 20q13. Prostate 63:276-90 CrossRef
    24. Sun J, Zheng SL, Wiklund F et al (2008) Evidence for two independent prostate cancer risk-associated loci in the HNF1B gene at 17q12. Nat Genet 40:1153-155 CrossRef
    25. Takata R, Akamatsu S, Kubo M et al (2010) Genome-wide association study identifies five new susceptibility loci for prostate cancer in the Japanese population. Nat Genet 42:751-54 CrossRef
    26. Tavtigian SV, Simard J, Teng DH et al (2001) A candidate prostate cancer susceptibility gene at chromosome 17p. Nat Genet 27:172-80 CrossRef
    27. Thomas G, Jacobs KB, Yeager M et al (2008) Multiple loci identified in a genome-wide association study of prostate cancer. Nat Genet 40:310-15 CrossRef
    28. Xu J, Zheng SL, Komiya A et al (2002) Germline mutations and sequence variants of the macrophage scavenger receptor 1 gene are associated with prostate cancer risk. Nat Genet 32:321-25 CrossRef
    29. Xu J, Dimitrov L, Chang BL et al (2005) A combined genomewide linkage scan of 1,233 families for prostate cancer-susceptibility genes conducted by the international consortium for prostate cancer genetics. Am J Hum Genet 77:219-29 CrossRef
    30. Xu J, Zheng SL, Isaacs SD et al (2010) Inherited genetic variant predisposes to aggressive but not indolent prostate cancer. Proc Natl Acad Sci USA 107:2136-140 CrossRef
    31. Yeager M, Orr N, Hayes RB et al (2007) Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat Genet 39:645-49 CrossRef
    32. Yeager M, Chatterjee N, Ciampa J et al (2009) Identification of a new prostate cancer susceptibility locus on chromosome 8q24. Nat Genet 41:1055-057 CrossRef
  • 作者单位:Jianfeng Xu (1) (2)
    Ethan M. Lange (3) (4)
    Lingyi Lu (1) (2)
    Siqun L. Zheng (1) (2)
    Zhong Wang (1) (2)
    Stephen N. Thibodeau (5) (6)
    Lisa A. Cannon-Albright (7) (8)
    Craig C. Teerlink (7) (8)
    Nicola J. Camp (7) (8)
    Anna M. Johnson (3) (9)
    Kimberly A. Zuhlke (3) (9)
    Janet L. Stanford (10) (11)
    Elaine A. Ostrander (10) (12)
    Kathleen E. Wiley (13) (14)
    Sarah D. Isaacs (13) (14)
    Patrick C. Walsh (13) (14)
    Christiane Maier (15) (16)
    Manuel Luedeke (15) (16)
    Walther Vogel (15) (17)
    Johanna Schleutker (18) (19) (20)
    Tiina Wahlfors (18) (19)
    Teuvo Tammela (18) (21)
    Daniel Schaid (22) (5)
    Shannon K. McDonnell (22) (5)
    Melissa S. DeRycke (5) (6)
    Geraldine Cancel-Tassin (23) (24)
    Olivier Cussenot (23) (50)
    Fredrik Wiklund (25) (26)
    Henrik Gr?nberg (25) (26)
    Ros Eeles (27) (28)
    Doug Easton (27) (29)
    Zsofia Kote-Jarai (27) (28)
    Alice S. Whittemore (30) (31) (32)
    Chih-Lin Hsieh (30) (33)
    Graham G. Giles (27) (34) (35)
    John L. Hopper (27) (34) (35)
    Gianluca Severi (27) (34) (35)
    William J. Catalona (36) (37)
    Diptasri Mandal (38) (39)
    Elisa Ledet (38) (39)
    William D. Foulkes (27) (40) (51)
    Nancy Hamel (27) (40) (51)
    Lovise Mahle (27) (41)
    Pal Moller (27) (41)
    Isaac Powell (42) (43)
    Joan E. Bailey-Wilson (42) (44)
    John D. Carpten (42) (45)
    Daniela Seminara (46)
    Kathleen A. Cooney (3) (9)
    William B. Isaacs (13) (14)

    1. Data Coordinating Center for the ICPCG, Wake Forest University School of Medicine, Winston-Salem, NC, USA
    2. Center for Cancer Genomics, Wake Forest University School of Medicine, Winston-Salem, NC, USA
    3. University of Michigan ICPCG Group, University of Michigan Medical School, Ann Arbor, MI, USA
    4. Departments of Genetics and Biostatistics, University of North Carolina, Chapel Hill, NC, USA
    5. Mayo Clinic ICPGC Group, Mayo Clinic, Rochester, MN, USA
    6. Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
    7. University of Utah ICPCG Group, University of Utah School of Medicine, Salt Lake City, UT, USA
    8. Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
    9. Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
    10. Fred Hutchinson Cancer Research Center (FHCRC) ICPCG Group, Seattle, WA, USA
    11. Division of Public Health Sciences, FHCRC, Seattle, WA, USA
    12. Cancer Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
    13. Johns Hopkins University ICPCG Group, Baltimore, MD, USA
    14. Department of Urology, Johns Hopkins Medical Institutions, Johns Hopkins Hospital, Marburg 115, 600 North Wolfe Street, Baltimore, MD, 21287, USA
    15. University of Ulm ICPCG Group, University of Ulm, Ulm, Germany
    16. Department of Urology, University of Ulm, Ulm, Germany
    17. Institute of Human Genetics, University of Ulm, Ulm, Germany
    18. University of Tampere ICPCG Group, University of Tampere and Fimlab Laboratories, Tampere, Finland
    19. Institute of Biomedical Technology/BioMediTech, University of Tampere and Fimlab Laboratories, Tampere, Finland
    20. Department of Medical Biochemistry and Genetics, University of Turku, Turku, Finland
    21. Department of Urology, Tampere University Hospital, Tampere, Finland
    22. Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
    23. CeRePP ICPCG Group, Paris, France
    24. CeRePP UPMC University, Paris, France
    50. Department of Urology, APHP, Hospital Tenon, Paris, France
    25. Karolinska ICPCG Group, Karolinska Institutet, Stockholm, Sweden
    26. Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
    27. ACTANE (Anglo/Canadian/Texan/Australian/Norwegian/EU Biomed) Consortium ICPCG Group, Surrey, UK
    28. Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Surrey, UK
    29. Strangeways Laboratory, Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
    30. BC/CA/HI ICPCG Group, Stanford School of Medicine, Stanford, CA, USA
    31. Department of Health Research and Policy, Stanford School of Medicine, Stanford, CA, USA
    32. Stanford Comprehensive Cancer Center, Stanford School of Medicine, Stanford, CA, USA
    33. Department of Urology and Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, CA, USA
    34. Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Australia
    35. Centre for Molecular, Environmental, Genetic and Analytical Epidemiology, University of Melbourne, Melbourne, Australia
    36. Northwestern University ICPCG Group, Chicago, IL, USA
    37. Northwestern University Feinberg School of Medicine, Chicago, IL, USA
    38. Louisiana State University ICPCG Group, New Orleans, LA, USA
    39. Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
    40. Program in Cancer Genetics, Departments of Oncology and Human Genetics, McGill University, Montreal, QC, Canada
    51. Research Institute of the McGill University Health Centre, Montreal, QC, Canada
    41. The Norwegian Radium Hospital, Oslo, Norway
    42. African American Hereditary Prostate Cancer ICPCG Group, Detroit, MI, USA
    43. Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
    44. Inherited Disease Research Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
    45. Genetic Basis of Human Disease Research Division, Translational Genomics Research Institute, Phoenix, AZ, USA
    46. National Cancer Institute, NIH, Bethesda, MD, USA
  • ISSN:1432-1203
文摘
Prostate cancer has a strong familial component but uncovering the molecular basis for inherited susceptibility for this disease has been challenging. Recently, a rare, recurrent mutation (G84E) in HOXB13 was reported to be associated with prostate cancer risk. Confirmation and characterization of this finding is necessary to potentially translate this information to the clinic. To examine this finding in a large international sample of prostate cancer families, we genotyped this mutation and 14 other SNPs in or flanking HOXB13 in 2,443 prostate cancer families recruited by the International Consortium for Prostate Cancer Genetics (ICPCG). At least one mutation carrier was found in 112 prostate cancer families (4.6?%), all of European descent. Within carrier families, the G84E mutation was more common in men with a diagnosis of prostate cancer (194 of 382, 51?%) than those without (42 of 137, 30?%), P?=?9.9?×?10? [odds ratio 4.42 (95?% confidence interval 2.56-.64)]. A family-based association test found G84E to be significantly over-transmitted from parents to affected offspring (P?=?6.5?×?10?). Analysis of markers flanking the G84E mutation indicates that it resides in the same haplotype in 95?% of carriers, consistent with a founder effect. Clinical characteristics of cancers in mutation carriers included features of high-risk disease. These findings demonstrate that the HOXB13 G84E mutation is present in ~5?% of prostate cancer families, predominantly of European descent, and confirm its association with prostate cancer risk. While future studies are needed to more fully define the clinical utility of this observation, this allele and others like it could form the basis for early, targeted screening of men at elevated risk for this common, clinically heterogeneous cancer.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700