Description of Gas-Phase Ion/Neutral Interactions in Differential Ion Mobility Spectrometry: CV Prediction Using Calibration Runs
详细信息    查看全文
  • 作者:David Auerbach (1)
    Julia Aspenleiter (1)
    Dietrich A. Volmer (1)
  • 关键词:Differential ion mobility spectrometry ; Gas phase modifier ; Ion/neutral interactions ; Compensation voltage ; Prediction
  • 刊名:Journal of The American Society for Mass Spectrometry
  • 出版年:2014
  • 出版时间:September 2014
  • 年:2014
  • 卷:25
  • 期:9
  • 页码:1610-1621
  • 全文大小:1,620 KB
  • 参考文献:1. Schneider, B.B., Covey, T.R., Coy, S.L., Krylov, E.V., Nazarov, E.G.: Chemical effects in the separation process of a differential mobility/mass spectrometer system. Anal. Chem. 82, 1867-880 (2010) CrossRef
    2. Schneider, B.B., Covey, T.R., Coy, S.L., Krylov, E.V., Nazarov, E.G.: Control of chemical effects in the separation process of a differential mobility mass spectrometer system. Eur J Mass Spectrom (Chichester, Eng) 16, 57-1 (2010) CrossRef
    3. Schneider, B.B., Covey, T.R., Coy, S.L., Krylov, E.V., Nazarov, E.G.: Planar differential mobility spectrometer as a pre-filter for atmospheric pressure ionization mass spectrometry. Int. J. Mass Spectrom. 298, 45-4 (2010) CrossRef
    4. Nazarov, E.G., Coy, S.L., Krylov, E.V., Miller, R.A., Eiceman, G.A.: Pressure effects in differential mobility spectrometry. Anal. Chem. 78, 7697-706 (2006) CrossRef
    5. Krylov, E.V., Coy, S.L., Nazarov, E.G.: Temperature effects in differential mobility spectrometry. Int. J. Mass Spectrom. 279, 119-25 (2009) CrossRef
    6. Krylov, E.V., Coy, S.L., Vandermey, J., Schneider, B.B., Covey, T.R., Nazarov, E.G.: Selection and generation of waveforms for differential mobility spectrometry. Rev. Sci. Instrum. 81, 024101 (2010) CrossRef
    7. Krylov, E.V., Nazarov, E.G., Miller, R.A.: Differential mobility spectrometer: model of operation. Int. J. Mass Spectrom. 266, 76-5 (2007) CrossRef
    8. Buryakov, I.A., Krylov, E.V., Nazarov, E.G., Rasulev, U.K.: A new method of separation of multi-atomic ions by mobility at atmospheric pressure using a high-frequency amplitude-asymmetric strong electric field. Int. J. Mass Spectrom. Ion Processes 128, 143-48 (1993) CrossRef
    9. Buryakov, I.A.: Solution of the equation of continuity for ions moving in a gas under the action of a periodic asymmetric alternating waveform. Tech. Phys. Lett. 32, 67-9 (2006) CrossRef
    10. Spangler, G.E.: Theory of operation for differential ion mobility spectrometry without alpha. Int. J. Ion Mobil. Spectrom / . 215, 109-12 (2012)
    11. Spangler, G.E., Miller, R.A.: Application of mobility theory to the interpretation of data generated by linear and RF excited ion mobility spectrometers. Int. J. Mass Spectrom. 214, 95-04 (2002) CrossRef
    12. Krylov, E.V., Nazarov, E.G., Miller, R.A., Tadjikov, B., Eiceman, G.A.: Field dependence of mobilities for gas-phase-protonated monomers and proton-bound dimers of ketones by planar field asymmetric waveform ion mobility spectrometer (PFAIMS). J. Phys. Chem. A 106, 5437-444 (2002)
    13. Krylov, E.V., Nazarov, E.G.: Electric field dependence of the ion mobility. Int. J. Mass Spectrom. 285, 149-56 (2009) CrossRef
    14. Schneider, B.B., Covey, T.R., Nazarov, E.G.: DMS-MS separations with different transport gas modifiers. Int. J. Ion Mobil. Spectrom / . 16, 207-16 (2013)
    15. Kafle, A., Coy, S.L., Wong, B.M., Fornace, A.J., Glick, J.J., Vouros, P.: Understanding gas phase modifier interactions in rapid analysis by differential mobility-tandem mass spectrometry. J. Am. Soc. Mass Spectrom. doi:10.1007/s13361-013-0808-5 (2014)
    16. Levin, D.S., Vouros, P., Miller, R.A., Nazarov, E.G., Morris, J.C.: Characterization of gas-phase molecular interactions on differential mobility ion behavior utilizing an electrospray ionization-differential mobility-mass spectrometer system. Anal. Chem. 78, 96-06 (2006) CrossRef
    17. Creese, A.J., Cooper, H.J.: Separation and identification of isomeric glycopeptides by high field asymmetric waveform ion mobility spectrometry. Anal. Chem. 84, 2597-601 (2012) CrossRef
    18. Campbell, J.L., Le Blanc, J.C.Y., Schneider, B.B.: Probing electrospray ionization dynamics using differential mobility spectrometry: the curious case of 4-aminobenzoic acid. Anal. Chem. 84, 7857-864 (2012) CrossRef
    19. Barnett, D.A., Ells, B., Guevremont, R., Purves, R.W.: Separation of leucine and isoleucine by electrospray ionization-high field asymmetric waveform ion mobility spectrometry-mass spectrometry. J. Am. Soc. Mass Spectrom. 10, 1279-284 (1999) CrossRef
    20. Blagojevic, V., Chramow, A., Schneider, B.B., Covey, T.R., Bohme, D.K.: Differential mobility spectrometry of isomeric protonated dipeptides: modifier and field effects on ion mobility and stability. Anal. Chem. 83, 3470-476 (2011) CrossRef
    21. Shvartsburg, A.A., Creese, A.J., Smith, R.D., Cooper, H.J.: Separation of a set of peptide sequence isomers using differential ion mobility spectrometry. Anal. Chem. 83, 6918-923 (2011) CrossRef
    22. Shvartsburg, A.A., Singer, D., Smith, R.D., Hoffmann, R.: Ion mobility separation of isomeric phosphopeptides from a protein with variant modification of adjacent residues. Anal. Chem. 83, 5078-085 (2011) CrossRef
    23. Shvartsburg, A.A., Creese, A.J., Smith, R.D., Cooper, H.J.: Separation of peptide isomers with variant modified sites by high-resolution differential ion mobility spectrometry. Anal. Chem. 82, 8327-334 (2010) CrossRef
    24. Roetering, S., Nazarov, E.G., Borsdorf, H., Weickhardt, C.: Effect of dopants on the analysis of pesticides by means of differential mobility spectrometry with atmospheric pressure photoionization. Int. J. Ion Mobil. Spectrom. 13, 47-4 (2010) CrossRef
    25. Borsdorf, H., Mayer, T.: Electric field dependence of ion mobilities of aromatic compounds with different ionic mass and different functional groups. Int. J. Ion. Mobil. Spectrom. 13, 103-08 (2010) CrossRef
    26. Borsdorf, H., Mayer, T.: Temperature dependence of ion mobility signals of halogenated compounds. Talanta 101, 17-3 (2012) CrossRef
    27. Borsdorf, H., Nazarov, E.G., Miller, R.A.: Time-of-flight ion mobility spectrometry and differential mobility spectrometry: a comparative study of their efficiency in the analysis of halogenated compounds. Talanta 71, 1804-812 (2007) CrossRef
    28. Borsdorf, H., Nazarov, E.G., Miller, R.A.: Atmospheric-pressure ionization studies and field dependence of ion mobilities of isomeric hydrocarbons using a miniature differential mobility spectrometer. Anal. Chim. Acta 575, 76-8 (2006) CrossRef
    29. Eiceman, G., Krylov, E., Krylova, N.: A molecular and structural basis for compensation voltage. Int. J. Ion Mobil. 5, 1- (2002)
    30. Krylova, N.S., Krylov, E.V., Eiceman, G.A., Stone, J.A.: Effect of moisture on the field dependence of mobility for gas-phase ions of organophosphorus compounds at atmospheric pressure with field asymmetric ion mobility spectrometry. J. Phys. Chem. A 107, 3648-654 (2003)
    31. Varesio, E., Le Blanc, J.C.Y., Hopfgartner, G.: Real-time 2D separation by LC × differential ion mobility hyphenated to mass spectrometry. Anal. Bioanal. Chem. 402, 2555-564 (2012) CrossRef
    32. Parson, W.B., Schneider, B.B., Kertesz, V., Corr, J.J., Covey, T.R., Van Berkel, G.J.: Rapid analysis of isomeric exogenous metabolites by differential mobility spectrometry-mass spectrometry. Rapid Commun. Mass Spectrom. 25, 3382-386 (2011) CrossRef
    33. Hall, A.B., Coy, S.L., Nazarov, E.G., Vouros, P.: Development of rapid methodologies for the isolation and quantitation of drug metabolites by differential mobility spectrometry-mass spectrometry. Int. J. Ion Mobil. Spectrom / . 15, 151-56 (2012)
    34. Kolakowski, B.M., Mester, Z.: Review of applications of high-field asymmetric waveform ion mobility spectrometry (FAIMS) and differential mobility spectrometry (DMS). Analyst 132, 842-64 (2007)
    35. Borsdorf, H., Mayer, T., Zarejousheghani, M., Eiceman, G.A.: Recent developments in ion mobility spectrometry. Appl Spectrosc Rev 46, 472-21 (2011) CrossRef
    36. Brown, L.J., Creaser, C.S.: Field asymmetric waveform ion mobility spectrometry analysis of proteins and peptides: a review. Curr. Anal. Chem. 9, 192-98 (2013)
    37. Swearingen, K.E., Moritz, R.L.: High-field asymmetric waveform ion mobility spectrometry for mass spectrometry-based proteomics. Expert Rev. Proteom 9, 505-17 (2012) CrossRef
    38. Shan, Z., Asfour, A.A.: Viscosities and densities of nine binary 1-alkanol systems at 293.15 K and 298.15 K. J. Chem. Eng. Data 44, 118-23 (1999) CrossRef
    39. Cano-Gómez, J.J., Iglesias-Silva, G.A., Ramos-Estrada, M., Hall, K.R.: Densities and Viscosities for binary liquid mixtures of ethanol + 1-propanol, 1-butanol, and 1-pentanol from (293.15 to 328.15) K at 0.1 MPa. J. Chem. Eng. Data 57, 2560-567 (2012) CrossRef
    40. Meot-Ner (Mautner), M.: The ionic hydrogen bond. Chem. Rev. 105, 213-84 (2005) CrossRef
    41. Stone, J.: The kinetics and thermodynamics of ion solvation applicable to ion mobility spectrometry. Int. J. Ion Mobil. Spectrom. 5, 19-1 (2002)
    42. Ferguson, E.E.: Ion–molecule reactions. Annu. Rev. Phys. Chem. 26, 17-8 (1975)
    43. Bass, L., Chesnavich, W.J., Bowers, M.T.: Gas-phase ion–molecule association reactions. A statistical phase space theory approach. J. Am. Chem. Soc. 101, 5493-502 (1979) CrossRef
    44. Bouchoux, G., Salpin, J., Leblanc, D.: A relationship between the kinetics and thermochemistry of proton transfer reactions in the gas phase. Int. J. Mass Spectrom. Ion Processes 153, 37-8 (1996) CrossRef
    45. Ellis, H.W., Thackston, M.G., McDaniel, E.W., Mason, E.A.: Transport properties of gaseous ions over a wide energy range. Part III. At. Data Nucl. Data Tables 31, 113-51 (1984)
    46. Roussis, S.G.: Relative collision cross sections of organic ions. J. Am. Soc. Mass Spectrom. 6, 803-11 (1995) CrossRef
    47. Zhao, J., Zhang, R.: Proton transfer reaction rate constants between hydronium ion (H3O+) and volatile organic compounds. Atmos. Environ. 38, 2177-185 (2004) CrossRef
    48. Cappellin, L., Probst, M., Limtrakul, J., Biasioli, F., Schuhfried, E., Soukoulis, C., M?rk, T.D., Gasperi, F.: Proton transfer reaction rate coefficients between H3O + and some sulphur compounds. Int. J. Mass Spectrom. 295, 43-8 (2010) CrossRef
    49. Pervukhin, V.V.: Effect of additives in a carrier gas on the behavior of ions in an ion-mobility increment spectrometer. J. Anal. Chem. 63, 1293-301 (2008) CrossRef
    50. Hariharan, C.B., Baumbach, J.I., Vautz, W.: Linearized equations for the reduced ion mobilities of polar aliphatic organic compounds. Anal. Chem. 82, 427-31 (2010) CrossRef
    51. Hariharan, C., Ingo Baumbach, J., Vautz, W.: Empirical prediction of reduced ion mobilities of secondary alcohols. Int. J. Ion Mobil. Spectrom. 12, 59-3 (2009) CrossRef
    52. Pang, N., Yan, C.: Study of field mobilities dependence and direct separation of acidic phytohormones by differential mobility spectrometry–mass spectrometry. Int. J. Mass Spectrom. 362, 48-5 (2014)
    53. Ahmed, A., Cho, Y.J., No, M.-H., Koh, J., Tomczyk, N., Giles, K., Yoo, J.S., Kim, S.: Application of the Mason-Schamp equation and ion mobility mass spectrometry to identify structurally related compounds in crude oil. Anal. Chem. 83, 77-3 (2011) CrossRef
    54. Marshall, A.G., Rodgers, R.P.: Petroleomics: chemistry of the underworld. Proc. Natl. Acad. Sci. U. S. A. 105, 18090-8095 (2008) CrossRef
    55. Coy, S.L., Krylov, E.V., Schneider, B.B., Covey, T.R., Brenner, D.J., Tyburski, J.B., Patterson, A.D., Krausz, K.W., Fornace, A.J., Nazarov, E.G.: Detection of radiation-exposure biomarkers by differential mobility prefiltered mass spectrometry (DMS-MS). Int. J. Mass Spectrom. 291, 108-17 (2010) CrossRef
    56. Gilli, P., Gilli, G.: Hydrogen bond models and theories: the dual hydrogen bond model and its consequences. J. Mol. Struct. 972, 2-0 (2010) CrossRef
    57. Gilli, G., Gilli, P.: Towards an unified hydrogen-bond theory. J. Mol. Struct. 552, 1-5 (2000)
    58. Wu, R., McMahon, T.B.: Protonation sites and conformations of peptides of glycine [Gly(1-5)H(+)] by IRMPD spectroscopy. J. Phys. Chem. B 113, 8767-775 (2009)
    59. Hunter, E.P.L., Lias, S.G.: Evaluated gas phase basicities and proton affinities of molecules: an update. J. Phys. Chem. Ref. Data 27, 413-56 (1998) CrossRef
    60. Blagojevic, V., Koyanagi, G.K., Bohme, D.K.: Multi-component ion modifiers and arcing suppressants to enhance differential mobility spectrometry for separation of peptides and drug molecules. J. Am. Soc. Mass Spectrom. 25, 490-97 (2014) CrossRef
  • 作者单位:David Auerbach (1)
    Julia Aspenleiter (1)
    Dietrich A. Volmer (1)

    1. Institute of Bioanalytical Chemistry, Saarland University, Saarbrücken, Germany
  • ISSN:1879-1123
文摘
Differential ion mobility spectrometry (DMS) coupled to mass spectrometry is increasingly used in both quantitative analyses of biological samples and as a means of removing background interferences for enhanced selectivity and improved quality of mass spectra. However, DMS separation efficiency using dry inert gases often lacks the required selectivity to achieve baseline separation. Polar gas-phase modifiers such as alcohols are therefore frequently employed to improve selectivity via clustering/declustering processes. The choice of an optimal modifier currently relies on trial and error experiments, making method development a tedious activity. It was the goal of this study to establish a means of CV prediction for compounds using a homologous series of alcohols as gas-phase modifiers. This prediction was based on linear regression of compensation voltages of two calibration runs for the alcohols with the lowest and the highest molecular weights and readily available descriptors such as proton affinity and gas phase acidity of the modifier molecules. All experiments were performed on a commercial quadrupole linear ion trap mass spectrometer equipped with a DMS device between electrospray ionization source and entrance quadrupole lens. We evaluated our approach using a homologous series of 4-alkylbenzoic acids and a selection of 23 small molecules of high chemical diversity. Predicted CV values typically deviated from the experimentally determined values by less than 0.5?V. Several test compounds changed their ion mobility behavior for the investigated gas phase modifiers (e.g., from type B to type A) and thus could thus not be evaluated. Figure ?/em>

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700