One hundred new universal exonic markers for birds developed from a genomic pipeline
详细信息    查看全文
  • 作者:Kevin C. R. Kerr (1) (2)
    Alison Cloutier (1) (3)
    Allan J. Baker (1) (3)
  • 关键词:Primers ; Exons ; Protein ; coding ; Phylogenetics ; Genomics
  • 刊名:Journal of Ornithology
  • 出版年:2014
  • 出版时间:April 2014
  • 年:2014
  • 卷:155
  • 期:2
  • 页码:561-569
  • 全文大小:404 KB
  • 参考文献:1. Brown JW, Payne RB, Mindell DP (2007) Nuclear DNA does not reconcile 鈥渞ocks鈥?and 鈥渃locks鈥?in Neoaves: a comment on Ericson et al. Biol Lett 3:257鈥?59. doi:10.1038/nature03150 CrossRef
    2. Chojnowski JL, Kimball RT, Braun EL (2008) Introns outperform exons in analyses of basal avian phylogeny using clathrin heavy chain genes. Gene 410:89鈥?6. doi:10.1016/j.gene.2007.11.016 j.gene.2007.11.016" target="_blank" title="It opens in new window">CrossRef
    3. Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16:10881鈥?0890. doi:10.1093/nar/16.22.10881 CrossRef
    4. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792鈥?797. doi:10.1093/nar/gkh340 CrossRef
    5. Ericson PGP, Anderson CL, Ohlson JI et al (2006) Diversification of Neoaves: integration of molecular sequence data and fossils. Biol Lett 2:543鈥?47. doi:10.1098/rsbl2006.0523 CrossRef
    6. Fain MG, Houde P (2004) Parallel radiations in the primary clades of birds. Evolution 58:2558鈥?573. doi:10.1554/04-235
    7. Flicek P, Amode MR, Barrell D et al (2012) Ensembl 2012. Nucleic Acids Res 40:D84鈥揇90. doi:10.1093/nar/gkr991 CrossRef
    8. Fong JJ, Fujita MK (2011) Evaluating phylogenetic informativeness and data-type usage for new protein-coding genes across Vertebrata. Mol Phylogenet Evol 61:300鈥?07. doi:10.1016/j.ympev.2011.06.016 j.ympev.2011.06.016" target="_blank" title="It opens in new window">CrossRef
    9. Fredslund J, Schauser L, Madsen LH et al (2005) PriFi: using a multiple alignment of related sequences to find primers for amplification of homologs. Nucleic Acids Res 33:W516鈥揥520. doi:10.1093/nar/gki425 CrossRef
    10. Hackett SJ, Kimball RT, Reddy S et al (2008) A phylogenomic study of birds reveals their evolutionary history. Science 320:1763鈥?768. doi:10.1126/science.1157704 CrossRef
    11. Haider S, Ballester B, Smedley D et al (2009) BioMart Central Portal鈥攗nified access to biological data. Nucleic Acids Res 37:W23鈥揥27. doi:10.1093/nar/gkp265 CrossRef
    12. Hedges SB, Dudley J, Kumar S (2006) TimeTree: a public knowledge-base of divergence times among organisms. Bioinformatics 22:2971鈥?972. doi:10.1093/bioinformatics/btl505 CrossRef
    13. Holmes I, Durbin R (1998) Dynamic programming alignment accuracy. J Comput Biol 5:493鈥?04. doi:10.1089/cmb.1998.5.493 CrossRef
    14. Hughes CE, Eastwood RJ, Bailey CD (2006) From famine to feast? Selecting nuclear DNA sequence loci for plant species-level phylogeny reconstruction. Phil Trans R Soc Lond B 361:211鈥?25. doi:10.1098/rstb2005.1735 CrossRef
    15. Jetz W, Thomas GH, Joy JB et al (2012) The global diversity of birds in space and time. Nature 491:444鈥?48. doi:10.1038/nature11631 CrossRef
    16. Kalendar R, Lee D, Schulman AH (2011) Java web tools for PCR, in silico PCR, and oligonucleotide assembly and analysis. Genomics 98:137鈥?44. doi:10.1016/j.ygeno.2011.04.009 j.ygeno.2011.04.009" target="_blank" title="It opens in new window">CrossRef
    17. Kimball RT, Braun EL, Barker FK et al (2009) A well-tested set of primers to amplify regions spread across the avian genome. Mol Phylogenet Evol 50:654鈥?60. doi:10.1016/j.ympev.2008.11.018 j.ympev.2008.11.018" target="_blank" title="It opens in new window">CrossRef
    18. Leach茅 AD, Rannala B (2011) The accuracy of species tree estimation under simulation: a comparison of methods. Syst Biol 60:126鈥?37. doi:10.1093/sysbio/syq073 CrossRef
    19. Liu K, Linder CR, Warnow T (2010) Multiple sequence alignment: a major challenge to large-scale phylogenetics. PLoS Curr 2:RRN1198. doi:10.1371/currents.RRN1198
    20. L贸pez-Gir谩ldez F, Townsend JP (2011) PhyDesign: an online application for profiling phylogenetic informativeness. BMC Evol Biol 11:152. doi:10.1186/1471-2148-11-152 CrossRef
    21. McCormack JE, Harvey MG, Faircloth BC et al (2013) A phylogeny of birds based on over 1,500 loci collected by target enrichment and high-throughput sequencing. PLoS ONE 8:e54848. doi:10.1371/journal.pone.0054848 journal.pone.0054848" target="_blank" title="It opens in new window">CrossRef
    22. Murphy WJ, Eizirik E, Johnson WE et al (2001) Molecular phylogenetics and the origins of placental mammals. Nature 409:614鈥?18. doi:10.1038/35054550 CrossRef
    23. Parker J, Tsagkogeorga G, Cotton JA et al (2013) Genome-wide signatures of convergent evolution in echolocating mammals. Nature 502:228鈥?31. doi:10.1038/nature12511 CrossRef
    24. Pond SLK, Frost SDW, Muse SV (2005) HyPhy: hypothesis testing using phylogenies. Bioinformatics 21:676鈥?79. doi:10.1093/bioinformatics/bti079 CrossRef
    25. Rokas A, Holland PWH (2000) Rare genomic changes as a tool for phylogenetics. Trends Ecol Evol 15:454鈥?59. doi:10.1016/S0169-5347(00)01967-4 CrossRef
    26. Shapiro LH, Dumbacher JP (2001) Adenylate kinase intron 5: a new nuclear locus for avian systematics. Auk 118:248鈥?55. doi:10.1642/0004-8038(2001)118[0248:AKIANN]2.0.CO;2
    27. Smedley D, Haider S, Ballester B et al (2009) BioMart鈥攂iological queries made easy. BMC Genom 10:22. doi:10.1186/1471-2164-10-22 CrossRef
    28. Song S, Liu L, Edwards SV, Wu S (2012) Resolving conflict in eutherian mammal phylogeny using phylogenomics and the multispecies coalescent model. PNAS 109:14942鈥?4947. doi:10.1073/pnas.1211733109 CrossRef
    29. Townsend JP (2007) Profiling phylogenetic informativeness. Syst Biol 56:222鈥?31. doi:10.1080/10635150701311362 CrossRef
  • 作者单位:Kevin C. R. Kerr (1) (2)
    Alison Cloutier (1) (3)
    Allan J. Baker (1) (3)

    1. Department of Natural History, Royal Ontario Museum, 100 Queen鈥檚 Park, Toronto, ON, M5S 2C6, Canada
    2. Toronto Zoo, 361A Old Finch Avenue, Toronto, ON, M1B 5K7, Canada
    3. Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
  • ISSN:2193-7206
文摘
The functional constraint imposed on exonic sequences increases marker universality and improves sequence alignment accuracy, yet introns have been favoured recently in Avian Tree of Life studies because of the increased sequence coverage that would be required to yield similar resolving power with exons. In this study, we address this shortcoming by developing a pipeline to identify a large number of exonic markers from five avian genomes. Markers were targeted to maximize phylogenetic informativeness and to exclude multi-copy genes. We demonstrate the universality of these markers by testing a portion of them on a taxonomically diverse assemblage of avian specimens.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700