Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5
详细信息    查看全文
  • 作者:J.-L. Dufresne (1)
    M.-A. Foujols (2)
    S. Denvil (2)
    A. Caubel (3)
    O. Marti (3)
    O. Aumont (8)
    Y. Balkanski (3)
    S. Bekki (5)
    H. Bellenger (6)
    R. Benshila (6)
    S. Bony (1)
    L. Bopp (3)
    P. Braconnot (3)
    P. Brockmann (3)
    P. Cadule (2)
    F. Cheruy (1)
    F. Codron (1)
    A. Cozic (3)
    D. Cugnet (5)
    N. de Noblet (3)
    J.-P. Duvel (1)
    C. Ethé (2)
    L. Fairhead (1)
    T. Fichefet (9)
    S. Flavoni (6)
    P. Friedlingstein (3) (4)
    J.-Y. Grandpeix (1)
    L. Guez (1)
    E. Guilyardi (6)
    D. Hauglustaine (3)
    F. Hourdin (1)
    A. Idelkadi (1)
    J. Ghattas (2)
    S. Joussaume (3)
    M. Kageyama (3)
    G. Krinner (7)
    S. Labetoulle (6)
    A. Lahellec (1)
    M.-P. Lefebvre (1)
    F. Lefevre (5)
    C. Levy (6)
    Z. X. Li (1)
    J. Lloyd (6)
    F. Lott (1)
    G. Madec (6)
    M. Mancip (2)
    M. Marchand (5)
    S. Masson (6)
    Y. Meurdesoif (3)
    J. Mignot (6)
    I. Musat (1)
    S. Parouty (7)
    J. Polcher (1)
    C. Rio (1)
    M. Schulz (3)
    D. Swingedouw (3)
    S. Szopa (3)
    C. Talandier (6) (8)
    P. Terray (6)
    N. Viovy (3)
    N. Vuichard (3)
  • 关键词:Climate ; Climate change ; Climate projections ; Earth System Model ; CMIP5 ; CMIP3 ; Greenhouse gases ; Aerosols ; Carbon cycle ; Allowable emissions ; RCP scenarios ; Land use changes
  • 刊名:Climate Dynamics
  • 出版年:2013
  • 出版时间:10 - May 2013
  • 年:2013
  • 卷:40
  • 期:9
  • 页码:2123-2165
  • 全文大小:10857KB
  • 参考文献:1. Alexander MA, Blade I, Newman M, Lanzante JR, Lau NC, Scott JD (2002) The atmospheric bridge: the influence of ENSO teleconnections on air-sea interaction over the global oceans. J Climate 15(16):2205-231 CrossRef
    2. Alkama R, Kageyama M, Ramstein G, Marti O, Ribstein P, Swingedouw D (2008) Impact of a realistic river routing in coupled ocean-atmosphere simulations of the Last Glacial Maximum climate. Clim Dyn 30(7-):855-69. doi:10.1007/s00382-007-0330-1 CrossRef
    3. Andrews T, Forster PM (2008) / CO 2 forcing induces semi-direct effects with consequences for climate feedback interpretations. Geophys Res Lett 35:L04802. doi:10.1029/2007GL032273 CrossRef
    4. Arakawa A, Lamb VR (1981) A potential enstrophy and energy conserving scheme for the shallow water equations. Mon Wea Rev 109(1):18-6 CrossRef
    5. Aumont O, Bopp L (2006) Globalizing results from ocean in situ iron fertilization studies. Global Biogeochem Cycles 20(2):GB2017. doi:10.1029/2005GB002591 CrossRef
    6. Aumont O, Bopp L, Schulz M (2008) What does temporal variability in aeolian dust deposition contribute to sea-surface iron and chlorophyll distributions. Geophys Res Lett 35(7):L07607. doi:10.1029/2007GL031131 CrossRef
    7. Axell LB (2002) Wind-driven internal waves and langmuir circulations in a numerical ocean model of the southern Baltic sea. J Geophys Res Oce 107(C11):3204. doi:10.1029/2001JC000922 CrossRef
    8. Balkanski Y (2011) L’influence des aérosols sur le climat. Thèse d’Habilitation à Diriger des Recherches. Université Versailles Saint Quentin, France
    9. Balkanski Y, Myhre G, Gauss M, R?del G, Highwood EJ, Shine KP (2010) Direct radiative effect of aerosols emitted by transport: from road, shipping and aviation. Atmos Chem Phys 10(10):4477-489. doi:10.5194/acp-10-4477-2010 CrossRef
    10. Ball JT, Woodrow IE, Berry JA (1987) A model predicting stomatal conductance and its contribution to the control of photosynthesis under dierent environmental conditions. In: Biggens J (eds) Progress in photosynthesis research, vol IV. Martinus Nijho, Dordrecht, Netherlands, pp 221-24
    11. Barnier B, Madec G, Penduff T, Molines JM, Treguier AM, Le Sommer J, Beckmann A, Biastoch A, B?ning C, Dengg J, Derval C, Durand E, Gulev S, Remy E, Talandier C, Theetten S, Maltrud M, McClean J, De Cuevas B (2006) Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-permitting resolution. Ocean Dyn 56:543-67. doi:10.1007/s10236-006-0082-1 CrossRef
    12. Beckmann A, D?scher R (1997) A method for improved representation of dense water spreading over topography in geopotential-coordinate models. J Phys Oceanogr 27(4):581-91 CrossRef
    13. Bellenger H, Duvel JP, Lengaigne M, Levan P (2009) Impact of organized intraseasonal convective perturbations on the tropical circulation. Geophys Res Lett 36:L16703. doi:10.1029/2009GL039584 CrossRef
    14. Blanke B, Delecluse P (1993) Variability of the tropical Atlantic Ocean simulated by a general circulation model with two different mixed-layer physics. J Phys Oceanogr 23(7):1363-388 CrossRef
    15. Bony S, Emanuel KA (2001) A parameterization of the cloudiness associated with cumulus convection; evaluation using TOGA COARE data. J Atmos Sci 58:3158-183 CrossRef
    16. Boucher O, Lohmann U (1995) The sulfate-CCN-cloud albedo effect: a sensitivity study with two general circulation models. Tellus Ser B 47:281-00 CrossRef
    17. Boucher O, Pham M (2002) History of sulfate aerosol radiative forcings. Geophys Res Lett 29(9):1308. doi:10.1029/2001GL014048 CrossRef
    18. Braconnot P, Hourdin F, Bony S, Dufresne JL, Grandpeix JY, Marti O (2007) Impact of different convective cloud schemes on the simulation of the tropical seasonal cycle with a coupled ocean-atmosphere model. Clim Dyn 29(5):501-20. doi:10.1007/s00,382-007-0244-y CrossRef
    19. Brohan P, Kennedy JJ, Harris I, Tett SFB, Jones PD (2006) Uncertainty estimates in regional and global observed temperature changes: a new data set from 1850. J Geophys Res Atm 111(D12):D12106. doi:10.1029/2005JD006548 CrossRef
    20. Burchard H, Rennau H (2008) Comparative quantification of physically and numerically induced mixing in ocean models. Ocean Model 20(3):293-11. doi:10.1016/j.ocemod.2007.10.003 CrossRef
    21. Cadule P, Bopp L, Friedlingstein P (2009) A revised estimate of the processes contributing to global warming due to climate-carbon feedback. Geophys Res Lett 36:L14705. doi:10.1029/2009GL038681 CrossRef
    22. Cassou C (2008) Intraseasonal interaction between the Madden-Julian Oscillation and the North Atlantic Oscillation. Nature 455(7212):523-27. doi:10.1038/nature07286 CrossRef
    23. Cattiaux J, Quesada B, Arakelian A, Codron F, Vautard R, Yiou P (2013) North-Atlantic dynamics and European temperature extremes in the IPSL model: sensitivity to atmospheric resolution. Clim Dyn. doi:10.1007/s00382-012-1436-7
    24. Cheruy F, Campoy A, Dupont JC, Ducharne A, Hourdin F, Haeffelin M, Chiriaco M, Idelkadi A (2013) Combined influence of atmospherice physics and soil hydrology on the simulated meteorology at the SIRTA atmospheric obervatory. Clim Dyn. doi:10.1007/s00382-012-1469-y
    25. Chou C, Neelin JD (2004) Mechanisms of global warming impacts on regional tropical precipitation. J Climate 17(13):2688-701 CrossRef
    26. Chou C, Neelin JD, Chen CA, Tu JY (2009) Evaluating the ”rich-get-richer-mechanism in tropical precipitation change under global warming. J Clim 22(8):1982-005. doi:10.1175/2008JCLI2471.1 CrossRef
    27. Cionni I, Eyring V, Lamarque JF, Randel WJ, Stevenson DS, Wu F, Bodeker GE, Shepherd TG, Shindell DT, Waugh DW (2011) Ozone database in support of cmip5 simulations: results and corresponding radiative forcing. Atmos Chem Phys 11(21):11267-1292. doi:10.5194/acp-11-11267-2011 CrossRef
    28. Clement A, DiNezio P, Deser C (2011) Rethinking the Ocean’s role in the Southern Oscillation. J Clim 24(15):4056-072. doi:10.1175/2011JCLI3973.1 CrossRef
    29. Cleveland RB, Cleveland WS, McRae J, Terpenning I (1990) STL: A seasonal-trend decomposition procedure based on loess. J Off Stat 6(1):3-3
    30. Collatz G, Ribas-Carbo M, Berry J (1992) Coupled photosynthesis-stomatal conductance model for leaves of C4 plants. Aust J Plant Physiol 19:519-38 CrossRef
    31. Cravatte S, Madec G, Izumo T, Menkes C, Bozec A (2007) Progress in the 3-D circulation of the eastern equatorial Pacific in a climate ocean model. Ocean Model 17(1):28-8. doi:10.1016/j.ocemod.2006.11.003 CrossRef
    32. Déandreis C (2008) Impact des aérosols anthropiques sur le climat présent et futur. Thèse, Université Pierre et Marie Curie
    33. Déandreis C, Balkanski Y, Dufresne JL, Cozic A (2012) Radiative forcing estimates in coupled climate-chemistry models with emphasis on the role of the temporal variability. Atmos Chem Phys 12(12):5583-602. doi:10.5194/acp-12-5583-2012 CrossRef
    34. Doherty RM, Hulme M, Jones CG (1999) A gridded reconstruction of land and ocean precipitation for the extended tropics from 1974 to 1994. Int J Climatol 19(2):119-42 CrossRef
    35. d’Orgeval T, Polcher J, de Rosnay P (2008) Sensitivity of the West African hydrological cycle in ORCHIDEE to infiltration processes. Hydrol Earth Syst Sci 12(6):1387-401. doi:10.5194/hess-12-1387-2008 CrossRef
    36. Ducoudré N, Laval K, Perrier A (1993) SECHIBA, a new set of parameterizations of the hydrologic exchanges at the land-atmosphere interface within the LMD atmospheric general circulation model. Clim Dyn 6:248-73 CrossRef
    37. Dufresne JL, Bony S (2008) An assessment of the primary sources of spread of global warming estimates from coupled atmosphere-ocean models. J Clim 21(19):5135-144. doi:10.1175/2008JCLI2239.1 CrossRef
    38. Dufresne JL, Quaas J, Boucher O, Denvil F, Fairhead L (2005) Contrasts in the effects on climate of anthropogenic sulfate aerosols between the 20th and the 21st century. Geophys Res Lett 32:L21,703. doi:10.1029/2005GL023,619
    39. Duvel JP, Bellenger H, Bellon G, Remaud M (2013) An event-by-event assessment of tropical intraseasonal perturbations for general circulation models. Clim Dyn. doi:10.1007/s00382-012-1303-6
    40. Emanuel KA (1991) A scheme for representing cumulus convection in large-scale models. J Atmos Sci 48:2313-335 CrossRef
    41. Emile-Geay J, Madec G (2009) Geothermal heating, diapycnal mixing and the abyssal circulation. Ocean Sci 5(2):203-17 CrossRef
    42. Emori S, Brown SJ (2005) Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate. Geophys Res Lett 32:L17706. doi:10.1029/2005GL023272 CrossRef
    43. Escudier R, Mignot J, Swingedouw D (2013) A 20-yrs coupled ocean-sea ice-atmosphere variablility mode in the North Atlantic in an AOGCM. Clim Dyn. doi:10.1007/s00382-012-1402-4
    44. Eyring V, Cionni I, Bodeker GE, Charlton-Perez AJ, Kinnison DE, Scinocca JF, Waugh DW, Akiyoshi H, Bekki S, Chipperfield MP, Dameris M, Dhomse S, Frith SM, Garny H, Gettelman A, Kubin A, Langematz U, Mancini E, Marchand M, Nakamura T, Oman LD, Pawson S, Pitari G, Plummer DA, Rozanov E, Shepherd TG, Shibata K, Tian W, Braesicke P, Hardiman SC, Lamarque JF, Morgenstern O, Pyle JA, Smale D, Yamashita Y (2010) Multi-model assessment of stratospheric ozone return dates and ozone recovery in CCMVal-2 models. Atmos Chem Phys 10(19):9451-472. doi:10.5194/acp-10-9451-2010 CrossRef
    45. Eyring V, Cionni I, Lamarque JF, Akiyoshi H, Bodeker GE, Charlton-Perez AJ, Frith SM, Gettelman A, Kinnison DE, Nakamura T, Oman LD, Pawson S, Yamashita Y (2010) Sensitivity of 21st century stratospheric ozone to greenhouse gas scenarios. Geophys Res Lett 37:L16807. doi:10.1029/2010GL044443 CrossRef
    46. Eyring V, Cionni I, Arblaster J, Sedlácek J, Perlwitz J, Young P, Bekki S, Bergmann D, Cameron-Smith P, Collins W, Faluvegi G, Gottschaldt KD, Horowitz L, Kinnison D, Lamarque JF, Marsh D, Saint-Martin D, Shindell D, Sudo K, Szopa S, Watanabe S (2012) Long-term changes in tropospheric and stratospheric ozone and associated climate impacts in CMIP5 simulations. J Geophys Res Atm (in review)
    47. Farquhar G, von Caemmener S, Berry J (1980) A biochemical model of photosynthesis CO2 fixation in leaves of C3 species. Planta 49:78-0 CrossRef
    48. Fichefet T, Morales Maqueda MA (1997) Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J Geophys Res 102(C6):12609-2646. doi:10.1029/97JC00480 CrossRef
    49. Fichefet T, Morales Maqueda MA (1999) Modelling the influence of snow accumulation and snow-ice formation on the seasonal cycle of the Antarctic sea-ice cover. Clim Dyn 15(4):251-68. doi:10.1007/s003820050280 CrossRef
    50. Folberth GA, Hauglustaine DA, Lathiere J, Brocheton F (2006) Interactive chemistry in the Laboratoire de Meteorologie Dynamique general circulation model: model description and impact analysis of biogenic hydrocarbons on tropospheric chemistry. Atmos Chem Phys 6:2273-319. doi:10.5194/acp-6-2273-2006 CrossRef
    51. Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, LeanDC Jand Lowe, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Van Dorland R (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the scientific basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, chap 2. Cambridge University Press, Cambridge, pp 129-34
    52. Fouquart Y, Bonnel B (1980) Computations of solar heating of the Earth’s atmosphere: a new parametrization. Contrib Atmos Phys 53:35-2
    53. Friedlingstein P, Cox P, Betts R, Bopp L, von Bloh W, Brovkin V, Cadule P, Doney S, Eby M, Fung I, Bala G, John J, Jones C, Joos F, Kato T, Kawamiya M, Knorr W, Lindsay K, Matthews HD, Raddatz T, Rayner P, Reick C, Roeckner E, Schnitzler KG, Schnur R, Strassmann K, Weaver AJ, Yoshikawa C, Zeng N (2006) Climate-carbon cycle feedback analysis: Results from the C4MIP model intercomparison. J Clim 19(14):3337-353. doi:10.1175/JCLI3800.1 CrossRef
    54. Fr?hlich C, Lean J (2004) Solar radiative output and its variability: evidence and mechanisms. Astron Astrophys Rev 12(4):273-20. doi:10.1007/s00159-004-0024-1 CrossRef
    55. Gastineau G, D’Andrea F, Frankignoul C (2013) Atmospheric response to the north atlantic ocean variability on seasonal to decadal time scales. Clim Dyn. doi:10.1007/s00382-012-1333-0
    56. Gent PR, Mcwilliams JC (1990) Isopycnal mixing in ocean circulation models. J Phys Oceanogr 20(1):150-55 CrossRef
    57. Goulet L, Duvel JP (2000) A new approach to detect and characterize intermittent atmospheric oscillations: application to the intraseasonal oscillation. J Atmos Sci 57(15):2397-416. doi:10.1175/1520-0469(2000)057<2397:ANATDA>2.0.CO;2 CrossRef
    58. Grandpeix JY, Lafore JP (2010) A density current parameterization coupled with emanuel’s convection scheme. Part I: the models. J Atmos Sci 67(4):881-97. doi:10.1175/2009JAS3045.1 CrossRef
    59. Grandpeix JY, Lafore JP, Cheruy F (2010) A density current parameterization coupled with emanuel’s convection scheme. Part II: 1D simulations. J Atmos Sci 67(4):898-22. doi:10.1175/2009JAS3045.1 CrossRef
    60. Gregory J, Webb M (2008) Tropospheric adjustment induces a cloud component in / CO 2 forcing. J Clim 21(1):58-1. doi:10.1175/2007JCLI1834.1 CrossRef
    61. Gregory JM, Ingram WJ, Palmer MA, Jones GS, Stott PA, Thorpe RB, Lowe JA, Johns TC, Williams KD (2004) A new method for diagnosing radiative forcing and climate sensitivity. Geophys Res Lett 31(3):L03205. doi:10.1029/2003GL018747 CrossRef
    62. Guemas V, Codron F (2011) Differing impacts of resolution changes in latitude and longitude on the midlatitudes in the LMDZ atmospheric GCM. J Clim 24(22):5831-849. doi:10.1175/2011JCLI4093.1 CrossRef
    63. Guilyardi E, Wittenberg A, Fedorov A, Collins M, Wang C, Capotondi A, van Oldenborgh GJ, Stockdale T (2009) Understanding El Nino in ocean-atmosphere general circulation models: progress and challenges. Bull Am Meteorol Soc 90(3):325-40. doi:10.1175/2008BAMS2387.1 CrossRef
    64. Hall A (2004) The role of surface albedo feedback in climate. J Climate 17(7):1550-568 CrossRef
    65. Hansen J, Sato M, Kharecha P, von Schuckmann K (2011) Earth’s energy imbalance and implications. Atmos Chem Phys 11(24):13421-3449. doi:10.5194/acp-11-13421-2011 . http://www.atmos-chem-phys.net/11/13421/2011/
    66. Hansen J, Sato M, Ruedy R, Nazarenko L, Lacis A, Schmidt G, Russell G, Aleinov I, Bauer M, Bauer S, Bell N, Cairns B, Canuto V, Chandler M, Cheng Y, Del Genio A, Faluvegi G, Fleming E, Friend A, Hall T, Jackman C, Kelley M, Kiang N, Koch D, Lean J, Lerner J, Lo K, Menon S, Miller R, Minnis P, Novakov T, Oinas V, Perlwitz J, Perlwitz J, Rind D, Romanou A, Shindell D, Stone P, Sun S, Tausnev N, Thresher D, Wielicki B, Wong T, Yao M, Zhang S (2005) Efficacy of climate forcings. J Geophys Res Atm 110(D18):D18104. doi:10.1029/2005JD005776 CrossRef
    67. Hauglustaine D, Hourdin F, Jourdain L, Filiberti M, Walters S, Lamarque J, Holland E (2004) Interactive chemistry in the Laboratoire de Meteorologie Dynamique general circulation model: description and background tropospheric chemistry evaluation. J Geophys Res Atm 109(D4):D04314. doi:10.1029/2003JD003957 CrossRef
    68. Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19:5686-699 CrossRef
    69. Hibler WD (1979) A dynamic thermodynamic sea ice model. J Phys Oceanogr 9(4):815-46 CrossRef
    70. Hourdin F, Armengaud A (1999) The use of finite-volume methods for atmospheric advection of trace species. Part I: test of vairious formulations in a general circulation model. Mon Wea Rev 127:822-37 CrossRef
    71. Hourdin F, Couvreux F, Menut L (2002) Parameterisation of the dry convective boundary layer based on a mass flux representation of thermals. J Atmos Sci 59:1105-123 CrossRef
    72. Hourdin F, Musat I, Bony S, Braconnot P, Codron F, Dufresne JL, Fairhead L, Filiberti MA, Friedlingstein P, Grandpeix JY, Krinner G, LeVan P, Lott F (2006) The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Clim Dyn 27(7-):787-13. doi:10.1007/s00,382-006-0158-0 CrossRef
    73. Hourdin F, Foujols MA, Codron F, Guemas V, Dufresne JL, Bony S, Denvil S, Guez L, Lott F, Gatthas J, Braconnot P, Marti O, Meurdesoif Y, Bopp L (2013a) Impact of the LMDZ atmospheric grid configuration on the climate and sensitivity of the IPSL-CM5A coupled model. Submited Clim Dyn. doi:10.1007/s00382-012-1411-3
    74. Hourdin F, Grandpeix JY, Rio C, Bony S, Jam A, Cheruy F, Rochetin N, Fairhead L, Idelkadi A, Musat I, Dufresne JL, Lefebvre MP, Lahellec A, Roehrig R (2013b) From LMDZ5A to LMDZ5B: revisiting the parameterizations of clouds and convection in the atmosperic component of the IPSL-CM5 climate model. Clim Dyn. doi:10.1007/s00382-012-1343-y
    75. Huffman G, Adler R, Morrissey M, Bolvin D, Curtis S, Joyce R, McGavock B, Susskind J (2001) Global precipitation at one-degree daily resolution from multisatellite observations. J Hydrometeor 2(1):36-0 CrossRef
    76. Hurtt G, Chini L, Frolking S, Betts R, Feddema J, Fischer G, Fisk J, Hibbard K, Houghton R, Janetos A, Jones C, Kindermann G, Kinoshita T, Klein Goldewijk K, Riahi K, Shevliakova E, Smith S, Stehfest E, Thomson A, Thornton P, van Vuuren D, Wang Y (2011) Harmonization of land-use scenarios for the period 1500-100: 600?years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Climatic Change 109:117-61. doi:10.1007/s10584-011-0153-2 CrossRef
    77. IPCC (2007) In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the scientific basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, p 996
    78. Jam A, Hourdin F, Rio C, Couvreux F (2013) Resolved versus parametrized boundary-layer plumes. Part III: a diagnostic boundary-layer cloud parameterization derived from large eddy simulations. Boundary-Layer Meteorol. doi:10.1007/s10546-012-9789-3
    79. Johns T, Royer JF, H?schel I, Huebener H, Roeckner E, Manzini E, May W, Dufresne JL, Otter? O, van Vuuren D, Salasy Melia D, Giorgetta M, Denvil S, Yang S, Fogli P, K?rper J, Tjiputra J, Stehfest E, Hewitt C (2011) Climate change under aggressive mitigation: The ENSEMBLES multi-model experiment. Clim Dyn 37(8-0):1975-003. doi:10.1007/s00382-011-1005-5 CrossRef
    80. Jones PD, New M, Parker DE, Martin S, Rigor IG (1999) Surface air temperature and its changes over the past 150?years. Rev Geophys 37(2):173-99. doi:10.1029/1999RG900002 CrossRef
    81. Jourdain L, Bekki S, Lott F, Lefevre F (2008) The coupled chemistry-climate model LMDz-REPROBUS: description and evaluation of a transient simulation of the period 1980-999. Ann Geophys 26(6):1391-413. doi:10.5194/angeo-26-1391-2008 CrossRef
    82. Kageyama M, Braconnot P, Bopp L, Caubel A, Foujols MA, Guilyardi E, Khodri M, Lloyd J, Lombard F, Mariotti V, Marti O, Roy T, Woillez MN (2013a) Mid-Holocene and Last Glacial Maximum climate simulations with the IPSL model. Part I: comparing IPSL CM5A to IPSL CM4. Clim Dyn. doi:10.1007/s00382-012-1488-8
    83. Kageyama M, Braconnot P, Bopp L, Caubel A, Foujols MA, Guilyardi E, Khodri M, Lloyd J, Lombard F, Mariotti V, Marti O, Roy T, Woillez MN (2013b) Mid-Holocene and Last Glacial Maximum climate simulations with the IPSL model. Part II: model-data comparisons. Clim Dyn. doi:10.1007/s00382-012-1499-5
    84. Kanzow T, Cunningham SA, Johns WE, Hirschi JJM, Marotzke J, Baringer MO, Meinen CS, Chidichimo MP, Atkinson C, Beal LM, Bryden HL, Collins J (2010) Seasonal variability of the atlantic meridional overturning circulation at 26.5 degrees n. J Clim 23(21):5678-698. doi:10.1175/2010JCLI3389.1 CrossRef
    85. Kim ST, Jin FF (2011) An ENSO stability analysis. Part II: results from the twentieth and twenty-first century simulations of the CMIP3 models. Clim Dyn 36(7-):1609-627. doi:10.1007/s00382-010-0872-5 CrossRef
    86. Koch-Larrouy A, Madec G, Bouruet-Aubertot P, Gerkema T, Bessieres L, Molcard R (2007) On the transformation of Pacific water into Indonesian throughflow water by internal tidal mixing. Geophys Res Lett 34(4):L04604. doi:10.1029/2006GL028405 CrossRef
    87. Koch-Larrouy A, Lengaigne M, Terray P, Madec G, Masson S (2010) Tidal mixing in the Indonesian Seas and its effect on the tropical climate system. Clim Dyn 34(6):891-04. doi:10.1007/s00382-009-0642-4 CrossRef
    88. Konsta D, Chepfer H, Dufresne JL, Idelkadi A, Cesana G (2013) Evaluation of clouds simulated by the LMDZ5 GCM using A-train satellite observations (CALIPSO-PARASOL-CERES). Clim Dyn (submitted)
    89. Krinner G, Viovy N, de Noblet-Ducoudré N, Ogée J, Polcher J, Friedlingstein P, Ciais P, Sitch S, Prentice IC (2005) A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochem Cycles 19(1):GB1015. doi:10.1029/2003GB002199 CrossRef
    90. Lamarque JF, Bond TC, Eyring V, Granier C, Heil A, Klimont Z, Lee D, Liousse C, Mieville A, Owen B, Schultz MG, Shindell D, Smith SJ, Stehfest E, Van Aardenne J, Cooper OR, Kainuma M, Mahowald N, McConnell JR, Naik V, Riahi K, van Vuuren DP (2010) Historical (1850-2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmos Chem Phys 10(15):7017-039. doi:10.5194/acp-10-7017-2010 CrossRef
    91. Lamarque JF, Kyle G, Meinshausen M, Riahi K, Smith S, van Vuuren D, Conley A, Vitt F (2011) Global and regional evolution of short-lived radiatively-active gases and aerosols in the representative concentration pathways. Climatic Change 109(1-):191-12. doi:10.1007/s10584-011-0155-0 CrossRef
    92. Large W, Yeager S (2009) The global climatology of an interannually varying air-sea flux data set. Clim Dyn 33:341-64. doi:10.1007/s00382-008-0441-3 CrossRef
    93. Lathière J, Hauglustaine D, de Noblet-Ducoudré N, Krinner G, Folberth GA (2005) Past and future changes in biogenic volatile organic compound emissions simulated with a global dynamic vegetation model. Geophys Res Lett 32:L20818. doi:10.1029/2005GL024164 CrossRef
    94. Laval K, Sadourny R, Serafini Y (1981) Land surface processes in a simplified general circulation model. Geophys Astrophys Fluid Dyn 17:129-50 CrossRef
    95. Le Quéré C, Raupach MR, Canadell JG, Marland G, Bopp L, Ciais P, Conway TJ, Doney SC, Feely RA, Foster P, Friedlingstein P, Gurney K, Houghton RA, House JI, Huntingford C, Levy PE, Lomas MR, Majkut J, Metzl N, Ometto JP, Peters GP, Prentice IC, Randerson JT, Running SW, Sarmiento JL, Schuster U, Sitch S, Takahashi T, Viovy N, van der Werf GR, Woodward FI (2009) Trends in the sources and sinks of carbon dioxide. Nat Geosci 2(12):831-36. doi:10.1038/ngeo689 CrossRef
    96. Le Sommer J, Penduff T, Theetten S, Madec G, Barnier B (2009) How momentum advection schemes influence current-topography interactions at eddy permitting resolution. Ocean Model 29(1):1-4. doi:10.1016/j.ocemod.2008.11.007 CrossRef
    97. Lean J (2009) Calculations of solar irradiance: monthly means from 1882 to 2008, annual means from 1610 to 2008. http://www.geo.fu-berlin.de/en/met/ag/strat/forschung/SOLARIS/Input_data/Calculations_of_Solar_Irradiance.pdf
    98. Lean J, Rottman G, Harder J, Kopp G (2005) SORCE contributions to new understanding of global change and solar variability. Solar Phys 230:27-3. doi:10.1007/s11207-005-1527-2 CrossRef
    99. Lefevre F, Brasseur GP, Folkins I, Smith AK, Simon P (1994) Chemistry of the 1991-1992 stratospheric winter: three-dimensional model simulations. J Geophys Res Atm 99(D4):8183-195. doi:10.1029/93JD03476 CrossRef
    100. Lefevre F, Figarol F, Carslaw KS, Peter T (1998) The 1997 Arctic ozone depletion quantified from three-dimensional model simulations. Geophys Res Lett 25(13):2425-428. doi:10.1029/98GL51812 CrossRef
    101. Lengaigne M, Menkes C, Aumont O, Gorgues T, Bopp L, Andre JM, Madec G (2007) Influence of the oceanic biology on the tropical Pacific climate in a coupled general circulation model. Clim Dyn 28(5):503-16. doi:10.1007/s00382-006-0200-2 CrossRef
    102. Lengaigne M, Madec G, Bopp L, Menkes C, Aumont O, Cadule P (2009) Bio-physical feedbacks in the Arctic Ocean using an Earth system model. Geophys Res Lett 36:L21602. doi:10.1029/2009GL040145 CrossRef
    103. Lenton A, Codron F, Bopp L, Metzl N, Cadule P, Tagliabue A, Sommer JL (2009) Stratospheric ozone depletion reduces ocean carbon uptake and enhances ocean acidification. Geophys Res Lett 36:L12606. doi:10.1029/2009GL038227 CrossRef
    104. Liebmann B, Smith CA (1996) Description of a complete (interpolated) outgoing longwave radiation dataset. Bull Am Meteorol Soc 77(6):1275-277
    105. Lloyd J, Guilyardi E, Weller H (2011) The role of atmosphere feedbacks during ENSO in the CMIP3 models. Part II: using AMIP runs to understand the heat flux feedback mechanisms. Clim Dyn 37(7-):1271-292. doi:10.1007/s00382-010-0895-y
    106. Lloyd J, Guilyardi E, Weller H (2012) The role of atmosphere feedbacks during ENSO in the CMIP3 models. Part III: the shortwave flux feedback. J Clim 25(12):4275-293. doi:10.1175/JCLI-D-11-00178.1 CrossRef
    107. Lott F (1999) Alleviation of stationary Biases in a GCM through a mountain drag parameterization scheme and a simple representation of mountain lift forces. Mon Wea Rev 127:788-01 CrossRef
    108. Lott F, Fairhead L, Hourdin F, Levan P (2005) The stratospheric version of LMDz: dynamical climatologies, arctic oscillation, and impact on the surface climate. Clim Dyn 25(7-):851-68. doi:10.1007/s00382-005-0064-x CrossRef
    109. Louis JF (1979) A parametric model of vertical eddy fluxes in the atmosphere. Boundary Layer Meteorol 17:187-02 CrossRef
    110. Loveland TR, Reed BC, Brown JF, Ohlen DO, Zhu Z, Yang L, Merchant JW (2000) Development of a global land cover characteristics database and IGBP DISCover from 1?km AVHRR data. Int J Remote Sens 21(6-):1303-330. doi:10.1080/014311600210191
    111. Ludwig W, Probst J, Kempe S (1996) Predicting the oceanic input of organic carbon by continental erosion. Global Biogeochemical Cycles 10(1):23-1. doi:10.1029/95GB02925 CrossRef
    112. Lyman JM, Good SA, Gouretski VV, Ishii M, Johnson GC, Palmer MD, Smith DM, Willis JK (2010) Robust warming of the global upper ocean. Nature 465(7296):334-37. doi:10.1038/nature09043 CrossRef
    113. Lévy M, Estublier A, Madec G (2001) Choice of an advection scheme for biogeochemical models. Geophys Res Lett 28(19):3725-728. doi:10.1029/2001GL012947 CrossRef
    114. Madec G (2008) NEMO ocean engine. Technical note, IPSL, available at http://www.nemo-ocean.eu/content/download/11245/56055/file/NEMO_book_v3_2.pdf
    115. Madec G, Imbard M (1996) A global ocean mesh to overcome the North Pole singularity. Clim Dyn 12(6):381-88. doi:10.1007/BF00211684 CrossRef
    116. Madronich S, Flocke S (1998) The role of solar radiation in atmospheric chemistry. In: Boule P (eds) Handbook of environmental chemistry. Springer, Heidelberg, pp 1-6
    117. Manabe S, Stouffer RJ (1980) Sensitivity of a global climate model to an increase of / CO 2 concentration in the atmosphere. J Geophys Res Oce 85(C10):5529-554. doi:10.1029/JC085iC10p05529 CrossRef
    118. Marti O, Braconnot P, Dufresne JL, Bellier J, Benshila R, Bony S, Brockmann P, Cadule P, Caubel A, Codron F, de Noblet N, Denvil S, Fairhead L, Fichefet T, Foujols MA, Friedlingstein P, Goosse H, Grandpeix JY, Guilyardi E, Hourdin F, Krinner G, Lévy C, Madec G, Mignot J, Musat I, Swingedouw D, J, Talandier C (2010) Key features of the IPSL ocean atmosphere model and its sensitivity to atmospheric resolution. Clim Dyn 34:1-6. doi:10.1007/s00382-009-0640-6 CrossRef
    119. Martin GM, Bellouin N, Collins WJ, Culverwell ID, Halloran PR, Hardiman SC, Hinton TJ, Jones CD, McDonald RE, McLaren AJ, O’Connor FM, Roberts MJ, Rodriguez JM, Woodward S, Best MJ, Brooks ME, Brown AR, Butchart N, Dearden C, Derbyshire SH, Dharssi I, Doutriaux-Boucher M, Edwards JM, Falloon PD, Gedney N, Gray LJ, Hewitt HT, Hobson M, Huddleston MR, Hughes J, Ineson S, Ingram WJ, James PM, Johns TC, Johnson CE, Jones A, Jones CP, Joshi MM, Keen AB, Liddicoat S, Lock AP, Maidens AV, Manners JC, Milton SF, Rae JGL, Ridley JK, Sellar A, Senior CA, Totterdell IJ, Verhoef A, Vidale PL, Wiltshire A (2011) The HadGEM2 family of met office unified model climate configurations. Geosci Model Dev 4(3):723-57. doi:10.5194/gmd-4-723-2011 CrossRef
    120. Marzin C, Braconnot P (2009) Variations of Indian and African monsoons induced by insolation changes at 6 and 9.5?kyr BP. Clim Dyn 33(2-3):215-31. doi:10.1007/s00382-009-0538-3 CrossRef
    121. Maury P, Lott F, Guez L, Duvel JP (2013) Tropical variability and stratospheric equatorial waves in the IPSLCM5 model. Clim Dyn. doi:10.1007/s00382-011-1273-0
    122. Meehl GA, Covey C, McAvaney B, Latif M, Stouffer RJ (2005) Overview of the coupled model intercomparison project. Bull Am Meteorol Soc 86(1):89-3 CrossRef
    123. Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ (2007) The WCRP CMIP3 multi-model dataset: a new era in climate change research. Bull Am Meteorol Soc 88(9):1383-394. doi:10.1175/BAMS-88-9-1383 CrossRef
    124. Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao ZC (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the scientific basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, chap 10. Cambridge University Press, Cambridge, pp 747-46
    125. Meinshausen M, Smith SJ, Calvin KV, Daniel JS, Kainuma, JF M Lamarque, Matsumoto K, Montzka SA, Raper SCB, Riahi K, Thomson AM, Velders GJM, van Vuuren D (2011) The RCP greenhouse gas concentrations and their extension from 1765 to 2300. Climatic Change 109:213-41. doi:10.1007/s10584-011-0156-z CrossRef
    126. Mellor G, Blumberg A (2004) Wave breaking and ocean surface layer thermal response. J Phys Oceanogr 34(3):693-98. doi:10.1175/2517.1 CrossRef
    127. Menut L, PTripathi O, Colette A, Vautard R, Flaounas E, Bessagnet B (2013) Evaluation of regional climate simulations for air quality modelling purposes. Clim Dyn. doi:10.1007/s00382-012-1345-9
    128. Merryfield WJ, Holloway G, Gargett AE (1999) A global ocean model with double-diffusive mixing. J Phys Oceanogr 29(6):1124-142 CrossRef
    129. Mitchell JFB, Johns TC, Eagles M, Ingram WJ, Davis RA (1999) Towards the construction of climate change scenarios. Climatic Change 41(3-):547-81. doi:10.1023/A:1005466909820 CrossRef
    130. Morcrette JJ, Smith L, Fouquart Y (1986) Pressure and temperature dependence of the absorption in longwave radiation parametrizations. Contrib Atmos Phys 59(4):455-69
    131. Morgenstern O, Giorgetta MA, Shibata K, Eyring V, Waugh DW, Shepherd TG, Akiyoshi H, Austin J, Baumgaertner AJG, Bekki S, Braesicke P, Bruehl C, Chipperfield MP, Cugnet D, Dameris M, Dhomse S, Frith SM, Garny H, Gettelman A, Hardiman SC, Hegglin MI, Joeckel P, Kinnison DE, Lamarque JF, Mancini E, Manzini E, Marchand M, Michou M, Nakamura T, Nielsen JE, Olivie D, Pitari G, Plummer DA, Rozanov E, Scinocca JF, Smale D, Teyssedre H, Toohey M, Tian W, Yamashita Y (2010) Review of the formulation of present-generation stratospheric chemistry-climate models and associated external forcings. J Geophys Res Atm 115:D00M02. doi:10.1029/2009JD013728 CrossRef
    132. Morissey ML (1990) An evaluation of ship data in the equatorial western Pacific. J Clim 3(1):99-12 CrossRef
    133. Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, Mitchell JFB, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, Wilbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nature 463(7282):747-56. doi:10.1038/nature08823 CrossRef
    134. Najjar RG, Jin X, Louanchi F, Aumont O, Caldeira K, Doney SC, Dutay JC, Follows M, Gruber N, Joos F, Lindsay K, Maier-Reimer E, Matear RJ, Matsumoto K, Monfray P, Mouchet A, Orr JC, Plattner GK, Sarmiento JL, Schlitzer R, Slater RD, Weirig MF, Yamanaka Y, Yool A (2007) Impact of circulation on export production, dissolved organic matter, and dissolved oxygen in the ocean: results from phase II of the Ocean carbon-cycle model intercomparison project (OCMIP-2). Global Biogeochem Cycles 21(3):GB3007. doi:10.1029/2006GB002857 CrossRef
    135. Persechino A, Mignot J, Swingedouw D, Labetoulle S, Guilyardi E (2013) Decadal predictability of the atlantic meridional overturning circulation and climate in the IPSLCM5A-LR model. Clim Dyn. doi:10.1007/s00382-012-1466-1
    136. Pham M, Boucher O, Hauglustaine D (2005) Changes in atmospheric sulfur burdens and concentrations and resulting radiative forcings under IPCC SRES emission scenarios for 1990-100. J Geophys Res Atm 110:D06112. doi:10.1029/2004JD005125 CrossRef
    137. Piao S, Ciais P, Friedlingstein P, de Noblet-Ducoudre N, Cadule P, Viovy N, Wang T (2009) Spatiotemporal patterns of terrestrial carbon cycle during the 20th century. Global Biogeochem Cycles 23:GB4026. doi:10.1029/2008GB003339 CrossRef
    138. Quaas J, Boucher O (2005) Constraining the first aerosol indirect radiative forcing in the LMDZ GCM using POLDER and MODIS satellite data. Geophys Res Lett 32:L17814. doi:10.1029/2005GL023850 CrossRef
    139. Ramaswamy V, Boucher O, Haigh J, Hauglustaine D, Haywood J, Myhre G, Nakajima T, Shi G, Solomon S (2001) Radiative forcing of climate change. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change, chap 6. Cambridge University Press, Cambridge, pp 349-16
    140. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res Atm 108(D14):4407. doi:10.1029/2002JD002670 CrossRef
    141. Rio C, Hourdin F (2008) A thermal plume model for the convective boundary layer: representation of cumulus clouds. J Atmos Sci 65:407-25 CrossRef
    142. Rio C, Hourdin F, Couvreux F, Jam A (2010) Resolved versus parametrized boundary-layer plumes. Part II: continuous formulations of mixing rates for mass-flux schemes. Boundary Layer Meteorol 135:469-83. doi:10.1007/s10546-010-9478-z CrossRef
    143. Rogelj J, Meinshausen M, Knutti R (2012) Global warming under old and new scenarios using IPCC climate sensitivity range estimates. Nat Clim Change 2(4):248-53. doi:10.1038/nclimate1385 CrossRef
    144. de Rosnay P, Polcher J (1998) Modelling root water uptake in a complex land surface scheme coupled to a GCM. Hydrol Earth Syst Sci 2(2-):239-55. doi:10.5194/hess-2-239-1998 CrossRef
    145. de Rosnay P, Polcher J, Laval K, Sabre M (2003) Integrated parameterization of irrigation in the land surface model ORCHIDEE. Validation over Indian Peninsula. Geophys Res Lett 30(19):1986. doi:10.1029/2003GL018024 CrossRef
    146. Sadourny R, Laval K (1984) January and July performance of the LMD general circulation model. In: New perspectives in climate modelling. Elsevier Science Publishers, Amsterdam, pp 173-98
    147. Sander SP, Friedl RR, Golden DM, Kurylo MJ, Moortgat GK, Keller-Rudek H, Wine PH, Ravishankara AR, Kolb CE, Molina MJ, Finlayson-Pitts BJ, Huie RE, Orkin VL (2006) Chemical kinetics and photochemical data for use in atmospheric studies, evaluation no. 15. JPL Publication 06-2, Jet Propulsion Laboratory, Pasadena (CA), USA, http://jpldataeval.jpl.nasa.gov
    148. Sato M, Hansen JE, McCormick MP, Pollack JB (1993) Stratospheric aerosol optical depths, 1850-990. J Geophys Res Atm 98(D12):22987-2994. doi:10.1029/93JD02553 CrossRef
    149. Schulz M (2007) Constraining model estimates of the aerosol radiative forcing. Thèse d’Habilitation à Diriger des Recherches, Université Pierre et Marie Curie, Paris, France
    150. Schulz M, Balkanski Y, Guelle W, Dulac F (1998) Role of aerosol size distribution and source location in a three-dimensional simulation of a saharan dust episode tested against satellite-derived optical thickness. J Geophys Res Atm 103(D9):10579-0592. doi:10.1029/97JD02779 CrossRef
    151. Simmons HL, Jayne SR, Laurent LCS, Weaver AJ (2004) Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Modelling 6(3-4):245-63. doi:10.1016/S1463-5003(03)00011-8 CrossRef
    152. Son SW, Gerber EP, Perlwitz J, Polvani LM, Gillett NP, Seo KH, Eyring V, Shepherd TG, Waugh D, Akiyoshi H, Austin J, Baumgaertner A, Bekki S, Braesicke P, Bruehl C, Butchart N, Chipperfield MP, Cugnet D, Dameris M, Dhomse S, Frith S, Garny H, Garcia R, Hardiman SC, Joeckel P, Lamarque JF, Mancini E, Marchand M, Michou M, Nakamura T, Morgenstern O, Pitari G, Plummer DA, Pyle J, Rozanov E, Scinocca JF, Shibata K, Smale D, Teyssedre H, Tian W, Yamashita Y (2010) Impact of stratospheric ozone on Southern Hemisphere circulation change: a multimodel assessment. J Geophys Res Atm 115:D00M07. doi:10.1029/2010JD014271 CrossRef
    153. Stevens B, Schwartz SE (2012) Observing and modeling Earth’s energy flows. Surv Geophys 33(3-):779-16. doi:10.1007/s10712-012-9184-0 CrossRef
    154. Stommel H (1961) Thermohaline convection with two stable regimes of flow. Tellus 13(2):224-30. doi:10.1111/j.2153-3490.1961.tb00079.x CrossRef
    155. Swart NC, Fyfe JC (2012) Ocean carbon uptake and storage influenced by wind bias in global climate models. Nat Clim Change 2(1):47-2. doi:10.1038/NCLIMATE1289 CrossRef
    156. Swingedouw D, Braconnot P, Delecluse P, Guilyardi E, Marti O (2007) The impact of global freshwater forcing on the thermohaline circulation: adjustment of North Atlantic convection sites in a CGCM. Clim Dyn 28(2):291-05. doi:10.1007/s00382-006-0171-3 CrossRef
    157. Swingedouw D, Braconnot P, Delecluse P, Guilyardi E, Marti O (2007) Quantifying the AMOC feedbacks during a 2xCO2 stabilization experiment with land-ice melting. Clim Dyn 29(5):521-34. doi:10.1007/s00382-007-0250-0 CrossRef
    158. Swingedouw D, Mignot J, Braconnot P, Mosquet E, Kageyama M, Alkama R (2009) Impact of freshwater release in the North Atlantic under different climate conditions in an OAGCM. J Clim 22(23):6377-403. doi:10.1175/2009JCLI3028.1 CrossRef
    159. Swingedouw D, Mignot J, Labetoule S, Guilyardi E, Madec G (2013) Initialisation and predictability of the AMOC over the last 50?years in a climate model. Clim Dyn. doi:10.1007/s00382-012-1516-8
    160. Szopa S, Balkanski Y, Schulz M, Bekki S, Cugnet D, Fortems-Cheiney A, Turquety S, Cozic A, Déandreis C, Hauglustaine D, Idelkadi A, Lathière J, Marchand M, Yan N, Dufresne JL (2013) Aerosol and ozone changes as forcing for climate evolution between 1850 and 2100. Clim Dyn. doi:10.1007/s00382-012-1408-y
    161. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485-98. doi:10.1175/BAMS-D-11-00094.1 CrossRef
    162. Terray P (2011) Southern Hemisphere extra-tropical forcing: a new paradigm for El Ni?o-Southern Oscillation. Clim Dyn 36(11-2):2171-199. doi:10.1007/s00382-010-0825-z CrossRef
    163. Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Wea Rev 117:1179-800 CrossRef
    164. Trenberth KE, Fasullo JT (2012) Tracking Earth’s energy: From El Ni?o to global warming. Surv Geophys 33(3-):413-26. doi:10.1007/s10712-011-9150-2 CrossRef
    165. Valcke S (2006) OASIS3 user’s guide (prism-2-5). Tech. Rep. TR/CMGC/06/73, PRISM Report No 3, CERFACS, Toulouse, France
    166. Van Leer B (1977) Towards the ultimate conservative difference scheme: IV. A new approach to numerical convection. J Computat Phys 23:276-99 CrossRef
    167. Vial J, Osborn TJ, Lott F (2013) Sudden stratospheric warmings and tropospheric blockings in a multi-century simulation of the IPSL-CM5A coupled climate model. Clim Dyn doi:10.1007/s00382-013-1675-2
    168. van Vuuren D, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt G, Kram T, Krey V, Lamarque JF, Masui T, Meinshausen M, Nakicenovic N, Smith S, Rose S (2011) The representative concentration pathways: an overview. Climatic Change, 1-7. 10.1007/s10584-011-0148-z
    169. Wang YM, Lean JL, Sheeley NR (2005) Modeling the sun’s magnetic field and irradiance since 1713. Astrophys J 625(1):522-38. doi:10.1086/429689 CrossRef
    170. Wanninkhof R (1992) Relationship between wind-speed and gas-exchange over the ocean. J Geophys Res Oce 97(C5):7373-382. doi:10.1029/92JC00188 CrossRef
    171. Wittenberg AT (2009) Are historical records sufficient to constrain ENSO simulations? Geophys Res Lett 36. doi:10.1029/2009GL038710
    172. Xavier PK, Duvel JP, Braconnot P, Doblas-Reyes FJ (2010) An evaluation metric for intraseasonal variability and its application to CMIP3 twentieth-century simulations. J Clim 23(13):3497-508. doi:10.1175/2010JCLI3260a.1
  • 作者单位:J.-L. Dufresne (1)
    M.-A. Foujols (2)
    S. Denvil (2)
    A. Caubel (3)
    O. Marti (3)
    O. Aumont (8)
    Y. Balkanski (3)
    S. Bekki (5)
    H. Bellenger (6)
    R. Benshila (6)
    S. Bony (1)
    L. Bopp (3)
    P. Braconnot (3)
    P. Brockmann (3)
    P. Cadule (2)
    F. Cheruy (1)
    F. Codron (1)
    A. Cozic (3)
    D. Cugnet (5)
    N. de Noblet (3)
    J.-P. Duvel (1)
    C. Ethé (2)
    L. Fairhead (1)
    T. Fichefet (9)
    S. Flavoni (6)
    P. Friedlingstein (3) (4)
    J.-Y. Grandpeix (1)
    L. Guez (1)
    E. Guilyardi (6)
    D. Hauglustaine (3)
    F. Hourdin (1)
    A. Idelkadi (1)
    J. Ghattas (2)
    S. Joussaume (3)
    M. Kageyama (3)
    G. Krinner (7)
    S. Labetoulle (6)
    A. Lahellec (1)
    M.-P. Lefebvre (1)
    F. Lefevre (5)
    C. Levy (6)
    Z. X. Li (1)
    J. Lloyd (6)
    F. Lott (1)
    G. Madec (6)
    M. Mancip (2)
    M. Marchand (5)
    S. Masson (6)
    Y. Meurdesoif (3)
    J. Mignot (6)
    I. Musat (1)
    S. Parouty (7)
    J. Polcher (1)
    C. Rio (1)
    M. Schulz (3)
    D. Swingedouw (3)
    S. Szopa (3)
    C. Talandier (6) (8)
    P. Terray (6)
    N. Viovy (3)
    N. Vuichard (3)

    1. Laboratoire de Météorologie Dynamique (LMD/IPSL), Centre National de la Recherche Scientifique (CNRS), Ecole Normale Supérieure (ENS), Ecole Polytechnique (EP), Université Pierre et Marie Curie (UPMC), Paris, France
    2. Institut Pierre Simon Laplace (IPSL), Centre National de la Recherche Scientifique (CNRS), Université de Versailles Saint-Quentin (UVSQ), Université Pierre et Marie Curie (UPMC), Commissariat à l’Energie Atomique (CEA), Institut de Recherche pour le Développement (IRD), Ecole Normale Supérieure (ENS), Ecole Polytechnique (EP), Université Denis Diderot, Université Paris-Est Créteil, Paris, France
    3. Laboratoire des Sciences du Climat et de l’Environnement (LSCE/IPSL), Centre National de la Recherche Scientifique (CNRS), Commissariat à l’Energie Atomique (CEA), Université de Versailles Saint-Quentin (UVSQ), Gif-sur-Yvette, France
    8. Laboratoire de Physique des Océans (LPO), Centre National de la Recherche Scientifique (CNRS), Institut Fran?ais de Recherche pour l’Exploitation de la Mer (Ifremer), Institut de Recherche pour le Développement (IRD), Université de Bretagne Occidentale (UBO), Brest, France
    5. Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS/IPSL), Centre National de la Recherche Scientifique (CNRS), Université de Versailles Saint-Quentin (UVSQ), Université Pierre et Marie Curie (UPMC), Paris, France
    6. Laboratoire d’Océanographie et du Climat: Expérimentation et Approches Numériques (LOCEAN/IPSL), Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie Curie (UPMC), Institut de Recherche pour le Développement (IRD), Museum National d’Histoire Naturelle (MNHM), Paris, France
    9. Georges Lema?tre Centre for Earth and Climate Research, Earth and Life Institute, Université Catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
    4. College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, UK
    7. Laboratoire de Glaciologie et Géophysique de l’Environnement (LGGE), Centre National de la Recherche Scientifique (CNRS), Université Joseph Fourier (UJF), Grenoble, France
  • ISSN:1432-0894
文摘
We present the global general circulation model IPSL-CM5 developed to study the long-term response of the climate system to natural and anthropogenic forcings as part of the 5th Phase of the Coupled Model Intercomparison Project (CMIP5). This model includes an interactive carbon cycle, a representation of tropospheric and stratospheric chemistry, and a comprehensive representation of aerosols. As it represents the principal dynamical, physical, and bio-geochemical processes relevant to the climate system, it may be referred to as an Earth System Model. However, the IPSL-CM5 model may be used in a multitude of configurations associated with different boundary conditions and with a range of complexities in terms of processes and interactions. This paper presents an overview of the different model components and explains how they were coupled and used to simulate historical climate changes over the past 150?years and different scenarios of future climate change. A single version of the IPSL-CM5 model (IPSL-CM5A-LR) was used to provide climate projections associated with different socio-economic scenarios, including the different Representative Concentration Pathways considered by CMIP5 and several scenarios from the Special Report on Emission Scenarios considered by CMIP3. Results suggest that the magnitude of global warming projections primarily depends on the socio-economic scenario considered, that there is potential for an aggressive mitigation policy to limit global warming to about two degrees, and that the behavior of some components of the climate system such as the Arctic sea ice and the Atlantic Meridional Overturning Circulation may change drastically by the end of the twenty-first century in the case of a no climate policy scenario. Although the magnitude of regional temperature and precipitation changes depends fairly linearly on the magnitude of the projected global warming (and thus on the scenario considered), the geographical pattern of these changes is strikingly similar for the different scenarios. The representation of atmospheric physical processes in the model is shown to strongly influence the simulated climate variability and both the magnitude and pattern of the projected climate changes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700