A Novel Switching Delayed PSO Algorithm for Estimating Unknown Parameters of Lateral Flow Immunoassay
详细信息    查看全文
  • 作者:Nianyin Zeng ; Zidong Wang ; Hong Zhang ; Fuad E. Alsaadi
  • 关键词:Switching delayed particle swarm optimization (SDPSO) ; Lateral flow immunoassay ; Markov chain ; Time ; delay ; Immunochromatographic strip
  • 刊名:Cognitive Computation
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:8
  • 期:2
  • 页码:143-152
  • 全文大小:999 KB
  • 参考文献:1.Abdullah A, Deris S, Hashim S, Mohamad M, Arjunan S. An improved local best searching in particle swarm optimization using differential evolution, In: 11th international conference on hybrid intelligent systems pp. 115–120, 2011.
    2.Clerc M, Kennedy J. The particle swarm: explosion, stability, and convergence in a multi-dimensional complex space. IEEE Trans Evol Comput. 2002;6(1):58–73.CrossRef
    3.Ding D, Wang Z, Shen B, Dong H. Event-triggered distributed \(H_{\infty }\) state estimation with packet dropouts through sensor networks. IET Control Theory Appl. 2015;9(13):1948–55.CrossRef
    4.Ding D, Wang Z, Alsaadi FE, Shen B. Receding horizon filtering for a class of discrete time-varying nonlinear systems with multiple missing measurements. Int J Gen Syst. 2015;44(2):198–211.CrossRef
    5.Ding D, Wang Z, Shen B, Wei G. Event-triggered consensus control for discrete-time stochastic multi-agent systems: the input-to-state stability in probability. Automatica. 2015;62:284–91.CrossRef
    6.Ding D, Wang Z, Lam J, Shen B. Finite-Horizon \(H_{\infty }\) control for discrete time-varying systems with randomly occurring nonlinearities and fading measurements. IEEE Trans Autom Control. 2016;60(9):2488–93.CrossRef
    7.Ding D, Wang Z, Shen B, Dong H. \(H_{\infty }\) state estimation with fading measurements, randomly varying nonlinearities and probabilistic distributed delays. Int J Robust Nonlinear Control. 2015;25(13):2180–95.
    8.Gillespie J, Gannot G, Tangrea M, Ahram M, Best C, Bichsel V, Petricoin E, Emmert-Buck M, Chuaqui R. Molecular profiling of cancer. Toxicol Pathol. 2004;32:67–71.CrossRef PubMed
    9.Hou N, Dong H, Wang Z, Ren W, Alsaadi FE. Non-fragile state estimation for discrete Markovian jumping neural networks. Neurocomputing. 2016;179:238–45.CrossRef
    10.Huang S, Wei H, Lee Y. One-step immunochro-matographic assay for the detection of Staphylococcus aureus. Food Control. 2007;18(8):893–7.CrossRef
    11.Kaur J, Singh K, Boro R, Thampi K, Raje M, Varshney G. Immunochromatographic dipstick assay format using gold nanoparticles labeled protein-hapten conjugate for the detection of atrazine. Environ Sci Technol. 2007;41(14):5028–36.CrossRef PubMed
    12.Kennedy J, Eberhart R. Particle swarm optimization, In: Proceedings of IEEE international conference on neural network pp. 1942–1948, 1995.
    13.Laderman E, Whitworth E, Dumaual E, Jones M, Hudak A, Hogrefe W, Carney J, Groen J. Rapid, sensitive, and specific lateral-flow immunochromatographic point-of-care device for detection of herpes simplex virus type 2-specific immunoglobulin G antibodies in serum and whole blood. Clin Vaccine Immunol. 2008;5:159–63.CrossRef
    14.Lundblad R, Wagner P. The potential of proteomics in developing diagnostics. IVD Technol. 2005;3:20–2.
    15.Li D, Wei S, Yang H, Li Y, Deng A. A sensitive immunochromatographic assay using colloidal gold-antibody probe for rapid detection of pharmaceutical indomethacin in water samples. Biosens Bioelectron. 2009;24(7):2277–80.CrossRef PubMed
    16.Liu Y, Alsaadi FE, Yin X, Wang Y. Robust \(H_{\infty }\) filtering for discrete nonlinear delayed stochastic systems with missing measurements and randomly occurring nonlinearities. Int J Gen Syst. 2015;44(2):169–81.CrossRef
    17.Luo Y, Wei G, Liu Y, Ding X. Reliable \(H_{\infty }\) state estimation for 2-D discrete systems with infinite distributed delays and incomplete observations. Int J Gen Syst. 2015;44(2):155–68.CrossRef
    18.Qian S, Haim H. A mathematical model of lateral flow bioreactions applied to sandwich assays. Anal Biochem. 2003;322(1):89–98.CrossRef PubMed
    19.Qian S, Haim H. Analysis of lateral flow biodetectors: competitive format. Anal Biochem. 2004;326(2):211–24.CrossRef PubMed
    20.Raphael C, Harley Y. Lateral flow immunoassay. New York: Humana Press; 2008.
    21.Ratnaweera A, Halgamure SK, Watson HC. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE Trans Evol Comput. 2004;8:240–55.CrossRef
    22.Shi Y, Eberhart RC. Empirical study of particle swarm optimization. In: Proceedings of the 1999 IEEE congress on evolutionary computation, pp. 1945–1950, 1999.
    23.Shi Y, Eberhart RC. Parameter selection in particle swarm optimization. In: Proceedings of the 7th international conference on evolutionary programming, pp. 591–600, 1998.
    24.Tanaka R, Yuhi T, Nagatani N, Endo T, Kerman K, Takamura Y. A novel enhancement assay for immunochromatographic test strips using gold nanoparticles. Anal Bioanal Chem. 2006;385(8):1414–20.CrossRef PubMed
    25.Tang Y, Wang Z, Fang J. Parameters identification of unknown delayed genetic regulatory networks by a switching particle swarm optimization algorithm. Expert Syst Appl. 2011;38:2523–35.CrossRef
    26.Tang YG, Guan X. Parameter estimation for time-delay chaotic system by particle swarm optimization. Chaos Solitons Fractals. 2009;40(3):1391–8.CrossRef
    27.Valle Y, Venayagamoorthy G, Mohagheghi S, Hernandez J, Harley R. Particle swarm optimization: basic concepts, variants and applications in power systems. IEEE Trans Evol Comput. 2008;12(2):171–95.CrossRef
    28.Yang H, Wang Z, Shu H, Alsaadi FE, Hayat T. Almost sure \(H_{\infty }\) sliding mode control for nonlinear stochastic systems with Markovian switching and time-delays. Neurocomputing. 2016;175:392–400.CrossRef
    29.Yu Y, Dong H, Wang Z, Ren W, Alsaadi FE. Design of non-fragile state estimators for discrete time-delayed neural networks with parameter uncertainties. Neurocomputing. 2016;182:18–24.CrossRef
    30.Zeng N, Wang Z, Li Y, Du M, Liu X. Identification of nonlinear lateral flow immunoassay state-space models via particle filter approach. IEEE Trans Nanotechnol. 2012;11(2):321–7.CrossRef
    31.Zeng N, Wang Z, Li Y, Du M, Liu X. A hybrid EKF and switching PSO algorithm for joint state and parameter estimation of lateral flow immunoassay models. IEEE/ACM Trans Comput Biol Bioinform. 2012;9(2):321–9.CrossRef PubMed
    32.Zeng N, Wang Z, Li Y, Du M, Liu X. Inference of nonlinear state-space models for sandwich-type lateral flow immunoassay using extended Kalman filtering. IEEE Trans Biomed Eng. 2011;58(7):1959–66.CrossRef PubMed
    33.Zeng N, Wang Z, Li Y, Du M, Cao J, Liu X. Time series modeling of nano-gold immunochromatographic assay via expectation maximization algorithm. IEEE Trans Biomed Eng. 2013;60(12):3418–24.CrossRef PubMed
    34.Zeng N, Hung YS, Li Y, Du M. A novel switching local evolutionary PSO for quantitative analysis of lateral flow immunoassay. Expert Syst Appl. 2014;41(4):1708–15.CrossRef
    35.Zeng N, Wang Z, Zineddin B, Li Y, Du M, Xiao L, Liu X, Young T. Image-based quantitative analysis of gold immunochromatographic strip via cellular neural network approach. IEEE Trans Med Imaging. 2014;33(5):1129–36.CrossRef PubMed
    36.Zhan Z, Zhang J, Li Y, Chung H. Adaptive particle swarm optimization. IEEE Trans Syst Man Cybern B. 2009;39(6):1362–81.CrossRef
    37.Zhang G, Wang X, Zhi A, Bao Y, Yang Y, Qu M, Luo J, Li Q, Guo J, Wang Z, Yang J, Xing G, Chai S, Shi T, Liu Q. Development of a lateral flow immunoassay strip for screening of sulfamonomethoxine residues. Food Addit Contam Part A. 2008;25(4):413–23.CrossRef
    38.Zhu J, Chen W, Lu Y, Cheng G. Development of an immunochromatographic assay for the rapid detection of bromoxynil in water. Environ Pollut. 2008;156(1):136–42.CrossRef PubMed
  • 作者单位:Nianyin Zeng (1)
    Zidong Wang (2) (3)
    Hong Zhang (1)
    Fuad E. Alsaadi (3)

    1. Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen, Fujian, 361005, People’s Republic of China
    2. Department of Computer Science, Brunel University London, Uxbridge, Middlesex, UB8 3PH, UK
    3. Communication Systems and Networks (CSN) Research Group, Faculty of Engineering, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
  • 刊物主题:Neurosciences; Computation by Abstract Devices; Artificial Intelligence (incl. Robotics); Computational Biology/Bioinformatics;
  • 出版者:Springer US
  • ISSN:1866-9964
文摘
In this paper, the parameter identification problem of the lateral flow immunoassay (LFIA) devices is investigated via a new switching delayed particle swarm optimization (SDPSO) algorithm. By evaluating an evolutionary factor in each generation, the velocity of the particle can adaptively adjust the model according to a Markov chain in the proposed SDPSO method. During the iteration process, the SDPSO can adaptively select the inertia weight, acceleration coefficients, locally best particle pbest and globally best particle gbest in the swarm. It is worth highlighting that the pbest and the gbest can be randomly selected from the corresponding values in the previous iteration. That is, the delayed information of the pbest and the gbest can be exploited to update the particle’s velocity in current iteration according to the evolutionary states. The strategy can not only improve the global search but also enhance the possibility of eventually reaching the gbest. The superiority of the proposed SDPSO is evaluated on a series of unimodal and multimodal benchmark functions. Results demonstrate that the novel SDPSO algorithm outperforms some well-known PSO algorithms in aspects of global search and efficiency of convergence. Finally, the novel SDPSO is successfully exploited to estimate the unknown time-delay parameters of a class of nonlinear state-space LFIA model.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700