Spin-Based CMOS-Compatible Devices
详细信息    查看全文
  • 刊名:Lecture Notes in Computer Science
  • 出版年:2015
  • 出版时间:2015
  • 年:2015
  • 卷:9374
  • 期:1
  • 页码:42-49
  • 全文大小:264 KB
  • 参考文献:1.Appelbaum, I., Huang, B., Monsma, D.J.: Electronic measurement and control of spin transport in Silicon. Nature 447, 295–298 (2007)CrossRef
    2.Huang, B., Monsma, D.J., Appelbaum, I.: Coherent spin transport through a 350 micron thick silicon wafer. Phys. Rev. Lett. 99, 177209 (2007)CrossRef
    3.Jansen, R.: Silicon spintronics. Nat. Mater. 11, 400–408 (2012)CrossRef
    4.Datta, S., Das, B.: Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 56, 665–667 (1990)CrossRef
    5.Sugahara, S., Nitta, J.: Spin-transistor electronics: an overview and outlook. Proc. IEEE 98, 2124–2154 (2010)CrossRef
    6.Schmidt, G., Ferrand, D., Molenkamp, L.W., Filip, A.T., van Wees, B.J.: Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor. Phys. Rev. B 62, R4790–R4793 (2000)CrossRef
    7.Rashba, E.I.: Theory of electrical spin injection: tunnel contacts as a solution of the conductivity mismatch problem. Phys. Rev. B 62, R16267–R16270 (2000)CrossRef
    8.Dash, S.P., Sharma, S., Patel, R.S., de Jong, M.P., Jansen, R.: Electrical creation of spin polarization in silicon at room temperature. Nature 462, 491–494 (2009)CrossRef
    9.Li, C., van’t Erve, O., Jonker, B.: Electrical injection and detection of spin accumulation in silicon at 500K with magnetic metal/silicon dioxide contacts. Nat. Commun. 2, 245 (2011)CrossRef
    10.Jansen, R., Deac, A.M., Saito, H., Yuasa, S.: Injection and detection of spin in a semiconductor by tunneling via interface states. Phys. Rev. B 85, 134420 (2012)CrossRef
    11.Song, Y., Dery, H.: Magnetic-field-modulated resonant tunneling in ferromagnetic-insulator-nonmagnetic junctions. Phys. Rev. Lett. 113, 047205 (2014)CrossRef
    12.Zutic, I., Fabian, J., Das Sarma, S.: Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004)CrossRef
    13.Fabian, J., Matos-Abiaguea, A., Ertler, C., Stano, P., Zutic, I.: Semiconductor spintronics. Acta Phys. Slovaca 57, 565–907 (2007)CrossRef
    14.Cheng, J.L., Wu, M.W., Fabian, J.: Theory of the spin relaxation of conduction electrons in silicon. Phys. Rev. Lett. 104, 016601 (2010)CrossRef
    15.Li, P., Dery, H.: Spin-orbit symmetries of conduction electrons in silicon. Phys. Rev. Lett. 107, 107203 (2011)CrossRef
    16.Song, Y., Dery, H.: Analysis of phonon-induced spin relaxation processes in silicon. Phys. Rev. B 86, 085201 (2012)CrossRef
    17.Li, J., Appelbaum, I.: Modeling spin transport in electrostatically-gated lateral-channel silicon devices: role of interfacial spin relaxation. Phys. Rev. B 84, 165318 (2011)CrossRef
    18.Li, J., Appelbaum, I.: Lateral spin transport through bulk silicon. Appl. Phys. Lett. 100, 162408 (2012)CrossRef
    19.Osintsev, D., Baumgartner, O., Stanojevic, Z., Sverdlov, V., Selberherr, S.: Subband splitting and surface roughness induced spin relaxation in (001) silicon SOI MOSFETs. Solid-State Electron. 90, 34–38 (2013)CrossRef
    20.Sverdlov, V.: Strain-Induced Effects in Advanced MOSFETs. Springer, Wien - New York (2011)CrossRef
    21.Jancu, J.M., Girard, J.C., Nestoklon, M.O., Lemaître, A., Glas, F., Wang, Z.Z., Voisin, P.: STM images of subsurface Mn Atoms in GaAs: evidence of hybridization of surface and impurity states. Phys. Rev. Lett. 101, 196801 (2008)CrossRef
    22.Prada, M., Klimeck, G., Joynt, R.: Spin-orbit splittings in Si/SiGe quantum wells: from ideal Si membranes to realistic heterostructures. New J. Phys. 13, 013009 (2011)CrossRef
    23.Wilamowski, Z., Jantsch, W.: Suppression of spin relaxation of conduction electrons by cyclotron motion. Phys. Rev. B 69, 035328 (2004)CrossRef
    24.Osintsev, D., Sverdlov, V., Stanojevi\(\grave{\rm c}\) , Z., Makarov, A., Selberherr, S.: Temperature dependence of the transport properties of spin field-effect transistors built with InAs and Si channels. Solid-State Electron. 71, 25–29 (2012)
    25.Slonczewski, J.: Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996)CrossRef
    26.Berger, L.: Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996)CrossRef
    27.Makarov, A., Sverdlov, V., Osintsev, D., Selberherr, S.: Reduction of switching time in pentalayer magnetic tunnel junctions with a composite-free layer. Phys. Status Solidi - Rapid Res. Lett. 5, 420–422 (2011)CrossRef
    28.Makarov, A., Sverdlov, V., Selberherr, S.: Magnetic tunnel junctions with a composite free layer: a new concept for future universal memory. In: Luryi, S., Xu, J., Zaslavsky, A. (eds.) Future Trends in Microelectronics, pp. 93–101. Wiley, New York (2013)CrossRef
    29.Makarov, A.: Modeling of emerging resistive switching based memory cells. Dissertation, Institute for Microelectronics, TU Wien (2014)
    30.Endoh, T.: STT-MRAM technology and its NV-logic applications for ultimate power management. In: 2014 CMOS Emerging Technologies Research (CMOSETR), p. 14 (2014)
    31.Natsui, M., Suzuki, D., Sakimura, N., Nebashi, R., Tsuji, Y., Morioka, A., Sugibayashi, T., Miura, S., Honjo, H., Kinoshita, K., Ikeda, S., Endoh, T., Ohno, H., Hanyu, T.: Nonvolatile logic-in-memory array processor in 90 nm MTJ/MOS achieving 75% leakage reduction using cycle-based power gating. In: 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 194–195 (2013)
    32.Lyle, A., Harms, J., Patil, S., Yao, X., Lilja, D.J., Wang, J.P.: Direct communication between magnetic tunnel junctions for nonvolatile logic fan-out architecture. Appl. Phys. Lett. 97, 152504 (2010)CrossRef
    33.Lyle, A., Patil, S., Harms, J., Glass, B., Yao, X., Lilja, D., Wang, J.: Magnetic tunnel junction logic architecture for realization of simultaneous computation and communication. IEEE Trans. Magn. 47, 2970–2973 (2011)CrossRef
    34.Mahmoudi, H., Windbacher, T., Sverdlov, V., Selberherr, S.: Implication logic gates using spin-transfer-torque-operated magnetic tunnel junctions for intrinsic logic-in-memory. Solid-State Electron. 84, 191–197 (2013)CrossRef
    35.Borghetti, J., Snider, G., Kuekes, P., Yang, J., Stewart, D., Williams, R.: Memristive switches enable stateful logic operations via material implication. Nature 464, 873–876 (2010)CrossRef
    36.Mahmoudi, H., Windbacher, T., Sverdlov, V., Selberherr, S.: Reliability analysis and comparison of implication and reprogrammable logic gates in magnetic tunnel junction logic circuits. IEEE Trans. Magn. 49, 5620–5628 (2013)CrossRef
  • 作者单位:Viktor Sverdlov (16)
    Siegfried Selberherr (16)

    16. Institute for Microelectronics, TU Wien, Vienna, Austria
  • 丛书名:Large-Scale Scientific Computing
  • ISBN:978-3-319-26520-9
  • 刊物类别:Computer Science
  • 刊物主题:Artificial Intelligence and Robotics
    Computer Communication Networks
    Software Engineering
    Data Encryption
    Database Management
    Computation by Abstract Devices
    Algorithm Analysis and Problem Complexity
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1611-3349
文摘
With CMOS feature size rapidly approaching scaling limits the electron spin attracts attention as an alternative degree of freedom for low-power non-volatile devices. Silicon is perfectly suited for spin-driven applications, because it is mostly composed of nuclei without spin and is characterized by weak spin-orbit interaction. Elliot-Yafet spin relaxation due to phonons’ mediated scattering is the main mechanism in bulk silicon at room temperature. Uniaxial stress dramatically reduces the spin relaxation, particularly in thin silicon films. Lifting the valley degeneracy completely in a controllable way by means of standard stress techniques represents a major breakthrough for spin-based devices. Despite impressive progress regarding spin injection, the larger than predicted signal amplitude is still heavily debated. In addition, the absence of a viable concept of spin manipulation in the channel by electrical means makes a practical realization of a device working similar to a MOSFET difficult. An experimental demonstration of such a spin field-effect transistor (SpinFET) is pending for 25 years now, which at present is a strong motivation for researchers to look into the subject. Commercially available CMOS compatible spin-transfer torque magnetic random access memory (MRAM) built on magnetic tunnel junctions possesses all properties characteristic to universal memory: fast operation, high density, and non-volatility. The critical current for magnetization switching and the thermal stability are the main issues to be addressed. A substantial reduction of the critical current density and a considerable increase of the thermal stability are achieved in structures with a recording layer between two vertically sandwiched layers, where the recording layer is composed of two parts in the same plane next to each other. MRAM can be used to build logic-in-memory architectures with non-volatile storage elements on top of CMOS logic circuits. Non-volatility and reduced interconnect losses guarantee low-power consumption. A novel concept for non-volatile logic-in-memory circuits utilizing the same MRAM cells to store and process information simultaneously is proposed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700