In-stream litter decomposition along an altitudinal gradient: does substrate quality matter?
详细信息    查看全文
  • 作者:Aingeru Martínez ; Silvia Monroy ; Javier Pérez ; Aitor Larrañaga…
  • 关键词:Resource quality ; Temperature ; Surrounding forest ; Microbial respiration ; Macroinvertebrates
  • 刊名:Hydrobiologia
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:766
  • 期:1
  • 页码:17-28
  • 全文大小:825 KB
  • 参考文献:Aerts, R., 2006. The freezer defrosting: global warming and litter decomposition rates in cold biomes. Journal of Ecology 94: 713–724.CrossRef
    Allen, S. E., H. M. Grimshaw, J. A. Parkinson & C. Quarmby, 1974. Chemical Analysis of Ecological Materials. Blackwell Scientific Publications, Oxford.
    APHA (American Public Health Association), 2005. Standard Methods For the Examination of Water and Wastewater, 21st ed. American Public Health Association, American Water Works Association, and Water Environment Federation, Washington, DC.
    Bärlocher, F. & J. J. Oertli, 1978. Inhibitors of aquatic hyphomycetes in dead conifer needles. Archiv für Hydrobiologie 81: 462–474.
    Battin, T. J., S. Luyssaert, L. A. Kaplan, A. K. Aufdenkampe, A. Richter & L. J. Tranvik, 2009. The boundless carbon cycle. Nature Geoscience 2: 598–600.CrossRef
    Bosatta, E. & G. I. Ågren, 1999. Soil organic matter quality interpreted thermodynamically. Soil Biology and Biochemistry 31: 1889–1891.CrossRef
    Boyero, L., R. G. Pearson, M. O. Gessner, L. A. Barmuta, V. Ferreira, M. A. S. Graça, et al., 2011. A global experiment suggests climate warming will not accelerate litter decomposition in streams but might reduce carbon sequestration. Ecology Letters 14: 289–294.PubMed CrossRef
    Brown, J. H., J. F. Gillooly, A. P. Allen, V. M. Savage & G. B. West, 2004. Toward a metabolic theory of ecology. Ecology 85: 1771–1789.CrossRef
    Casas, J. J., A. Larrañaga, M. Menéndez, J. Pozo, A. Basaguren, A. Martínez, J. Pérez, J. M. González, S. Mollá, C. Casado, E. Descals, N. Roblas, J. A. López-González & J. L. Valenzuela, 2013. Leaf litter decomposition of native and introduced tree species of contrasting quality in headwater streams: how does the regional setting matter? Science of the Total Environment 458–460: 197–208.PubMed CrossRef
    Castella, E., H. Adalsteinsson, J. E. Britain, G. M. Gislason, A. Lehmann, V. Lencioni, et al., 2001. Macrobenthic invertebrate richness and composition along a latitudinal gradient of European glacier-fed streams. Freshwater Biology 46: 1811–1831.CrossRef
    Cheever, B. M., E. B. Kratzer & J. R. Webster, 2012. Immobilization and mineralization of N and P by heterotrophic microbes during leaf decomposition. Freshwater Science 31: 133–147.CrossRef
    Conant, R. T., R. A. Drijber, M. L. Haddix, W. J. Parton, E. A. Paul, A. F. Plante, J. Six & M. Steinweg, 2008. Sensitivity of organic matter decomposition to warming varies with its quality. Global Change Biology 14: 868–877.CrossRef
    Coûteaux, M. M., P. Botter & B. Berg, 1995. Litter decomposition, climate and litter quality. Trends in Ecology and Evolution 10: 63–66.PubMed CrossRef
    Dang, C. K., M. O. Gessner & E. Chauvet, 2007. Influence of conidial traits and leaf structure on attachment success of aquatic hyphomycetes on leaf litter. Mycologia 99: 24–32.PubMed CrossRef
    Davidson, E. A. & I. A. Janssens, 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440: 165–173.PubMed CrossRef
    Davidson, E. A., I. A. Janssens & Y. Q. Luo, 2006. On the variability of respiration in terrestrial ecosystems: moving beyond Q10. Global Change Biology 12: 154–164.CrossRef
    Díaz-Villanueva, V., R. Albariño & C. Canhoto, 2011. Detritivores feeding on poor quality food are more sensitive to increased temperatures. Hydrobiolgia 678: 155–165.CrossRef
    Dokulil, M. T., 2013. Impact of climate warming on European inland waters. Inland Waters 4: 27–40.CrossRef
    Dodds, W. K., J. R. Jones & E. B. Welch, 1998. Suggested classification of stream trophic state: distributions of temperate stream types by chlorophyll, total nitrogen, and phosphorus. Water Research 32: 1455–1462.CrossRef
    Dossena, M., G. Yvon-Durocher, J. Grey, J. M. Montoya, D. M. Perkins, M. Trimmer & G. Woodward, 2012. Warming alters community size structure and ecosystem functioning. Proceedings of the Royal Society B-Biological Sciences 279: 3011–3019.PubMedCentral CrossRef
    Fernandes, I., C. Pascoal, H. Guimarães, R. Pinto, I. Sousa & F. Cássio, 2012. Higher temperature reduces the effects of litter quality on decomposition by aquatic fungi. Freshwater Biology 57: 2306–2317.CrossRef
    Ferreira, V. & C. Canhoto, 2014. Effect of experimental and seasonal warming on litter decomposition in a temperate stream. Aquatic Sciences 76: 155–163.CrossRef
    Ferreira, V. & E. Chauvet, 2011a. Future increase in temperature more than decrease in litter quality can affect microbial litter decomposition in streams. Oecologia 67: 279–291.CrossRef
    Ferreira, V. & E. Chauvet, 2011b. Synergistic effects of water temperature and dissolved nutrients on litter decomposition and associated fungi. Global Change Biology 17: 551–565.CrossRef
    Fierer, N., J. M. Craine, K. McLauchlan & J. P. Schimel, 2005. Litter quality and the temperature sensitivity of decomposition. Ecology 86: 320–326.CrossRef
    Flores, L., J. R. Díez, A. Larrañaga, C. Pacoal & A. Elosegi, 2013. Effects of retention site on breakdown of organic matter in a mountain stream. Freshwater Biology 58: 1267–1278.CrossRef
    Friberg, N., J. B. Dybkjær, J. S. Olafsson, G. M. Gislason, S. E. Larsen & T. L. Lauridsen, 2009. Relationships between structure and function in streams contrasting in temperature. Freshwater Biology 54: 2051–2068.CrossRef
    Frost, P. C., M. A. Evans-White, Z. V. Finkel, T. C. Jensen & V. Matzek, 2005. Are you what you eat? Physiological constraints on organismal stoichiometry in an elementally imbalanced world. Oikos 109: 18–25.CrossRef
    Gessner, M. O. & E. Chauvet, 2002. A case for using litter breakdown to assess functional stream integrity. Ecological Applications 12: 498–510.CrossRef
    Gillooly, J. F., J. H. Brown, G. B. West & V. M. Savage, 2001. Effect of size and temperature on metabolic rate. Science 239: 2248–2251.CrossRef
    Gonçalves, A. L., M. A. S. Graça & C. Canhoto, 2013. The effect of temperature on leaf decomposition and diversity of associated aquatic hyphomycetes depends on the substrate. Fungal Ecology 6: 546–553.CrossRef
    González, J. M. & M. A. S. Graça, 2003. Conversion of leaf litter to secondary production by a shredding caddis-fly. Freshwater Biology 48: 1578–1592.CrossRef
    Graça, M. A. S., 2001. The role of invertebrates on leaf litter decomposition in streams – a review. International Review of Hydrobiology 86: 383–393.CrossRef
    Hladyz, S., M. O. Gessner, P. S. Giller, J. Pozo & G. Woodward, 2009. Resource quality and stoichiometric constraints on stream ecosystem functioning. Freshwater Biology 54: 957–970.CrossRef
    Jiang, L. & P. J. Morin, 2007. Temperature fluctuation facilitates coexistence of competing species in experimental microbial communities. Journal of Animal Ecology 76: 660–668.PubMed CrossRef
    Kearns, S. G. & F. Bärlocher, 2008. Leaf surface roughness influences colonization success of aquatic hyphomycete conidia. Fungal Ecology 1: 13–18.CrossRef
    Kominoski, J. S. & C. M. Pringle, 2009. Resource–consumer diversity: testing the effects of leaf litter species diversity on stream macroinvertebrate communities. Freshwater Biology 54: 1461–1473.CrossRef
    Mariluan, G. D., V. Díaz-Villanueva & R. J. Albariño, 2015. Leaf litter breakdown and benthic invertebrate colonization affected by seasonal drought in headwater lotic systems of Andean Patagonia. Hydrobiologia. doi:10.​1007/​s10750-015-2324-z .
    Martínez, A., A. Larrañaga, A. Basaguren, J. Pérez, C. Mendoza-Lera & J. Pozo, 2013a. Stream regulation by small dams affects benthic macroinvertebrate communities: from structural changes to functional implications. Hydrobiologia 711: 31–42.CrossRef
    Martínez, A., A. Larrañaga, J. Pérez, E. Descals, A. Basaguren & J. Pozo, 2013b. Effects of pine plantations on structural and functional attributes of forested streams. Forest Ecology and Management 310: 147–155.CrossRef
    Martínez, A., A. Larrañaga, J. Pérez, E. Descals & J. Pozo, 2014. Effects of temperature on leaf-litter decomposition in low-order forested streams: field and microcosm approaches. FEMS Microbiology Ecology 87: 257–267.PubMed CrossRef
    Molinero, J., J. Pozo & E. González, 1996. Litter breakdown in streams of the Agüera catchment: influence of dissolved nutrients and land use. Freshwater Biology 36: 745–756.CrossRef
    Mouthon, J. & M. Daufresne, 2006. Effects of the 2003 heatwave and climatic warming on mollusc communities of the Saône: a large lowland river and of its two main tributaries (France). Global Change Biology 12: 441–449.CrossRef
    Ostrofsky, M. L., 1997. Relationship between chemical characteristics of autumn-shed leaves and aquatic processing rates. Journal of the North American Benthological Society 16: 750–759.CrossRef
    Pascoal, C. & F. Cássio, 2004. Contribution of fungi and bacteria to leaf litter decomposition in a polluted river. Applied Environmental Microbiology 70: 5266–5273.PubMed PubMedCentral CrossRef
    Pérez, J., M. Menéndez, S. Larrañaga & J. Pozo, 2011. Inter– and intra–regional variability of leaf litter breakdown in reference headwater streams of northern Spain: Atlantic versus Mediterranean streams. International Review of Hydrobiology 96: 105–117.CrossRef
    Pérez, J., J. Galán, E. Descals & J. Pozo, 2014. Effects of fungal inocula and habitat conditions on alder and eucalyptus leaf litter decomposition in streams of northern Spain. Microbial Ecology 67: 245–255.PubMed CrossRef
    Perkins, D. M., J. Reiss, G. Yvon-Durocher & G. Woodward, 2010. Global changes and food webs in running waters. Hydrobiologia 657: 181–198.CrossRef
    R Development Core Team (2010). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0, http://​www.​R-project.​org .
    Sterner, R. W. & J. J. Elser, 2002. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton.
    Swan, C. M. & M. A. Palmer, 2006. Composition of speciose leaf litter alters stream detritivore growth, feeding activity and leaf breakdown. Oecologia 147: 469–478.PubMed CrossRef
    Tachet, H., P. Richoux, M. Bournaud & P. Usseglio-Polatera, 2002. Invertébrés d’eau douce: systématique, biologie et écologie. CNRS, Paris: 587.
    Tank, J. L., E. J. Rosi-Marshall, N. A. Griffiths, S. A. Entrekin & M. L. Stephen, 2010. A review of allochthonous organic matter dynamics and metabolism. Journal of the North American Benthological Society 29: 118–146.CrossRef
    Taylor, B. R. & E. Chauvet, 2014. Relative influence of shredders and fungi on leaf litter decomposition along a river altitudinal gradient. Hydrobiologia 721: 239–250.CrossRef
    Wetterstedt, J. Å. M., T. Persson & G. I. Ågren, 2010. Temperature sensitivity and substrate quality in soil organic matter decomposition: results of an incubation study with three substrates. Global Change Biology 16: 1806–1819.CrossRef
    Woodward, F. I., 1987. Climate and plant distribution. Cambridge University Press, Cambridge.
    Woodward, G., 2009. Biodiversity, ecosystem functioning and freshwater food webs: assembling the jigsaw puzzle. Freshwater Biology 54: 2171–2187.CrossRef
    Ylla, I., C. Canhoto & A. M. Romaní, 2014. Effects of warming on stream biofilm organic matter use capabilities. Microbial Ecology 68: 132–145.PubMed CrossRef
    Zar, J. H., 2010. Biostatistical Analysis. Prentice Hall, Upper Saddle River.
  • 作者单位:Aingeru Martínez (1)
    Silvia Monroy (1)
    Javier Pérez (1)
    Aitor Larrañaga (1)
    Ana Basaguren (1)
    Jon Molinero (1)
    Jesús Pozo (1)

    1. Laboratory of Stream Ecology, Department of Plant Biology and Ecology, University of the Basque Country, UPV/EHU, P.O. Box 644, 48080, Bilbao, Spain
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Hydrobiology
    Ecology
  • 出版者:Springer Netherlands
  • ISSN:1573-5117
文摘
In temperate streams, water temperature and organic matter inputs from surrounding forest vary along the altitude. We tested if the different features of streams of similar size determined by an altitudinal gradient might differentially affect the processing rate of different quality leaves (alder, oak and beech). To distinguish the relative contribution of microbial decomposition from overall decomposition, fine- and coarse-mesh bags were used. We determined decomposition rates, leaf-N and -P concentration, microbial respiration (fine bags), invertebrate colonisation (coarse bags) and density and identity of benthic invertebrates in three second-order streams. Alder decomposed faster than the other species in all three streams and regardless of mesh size due to its lower values of C:N, C:P and N:P. Unexpectedly, microbial decomposition rate did not vary among streams for any of the leaf species. The total decomposition rate of alder and oak showed a negative trend along the altitudinal gradient, the magnitude of the change in decomposition rates being similar for both species. The density and structure of the invertebrate community differed along the altitudinal gradient, related to temperature and surrounding vegetation, determining the decomposition rate. Unexpectedly, sensitivity of decomposition rate of different quality leaves to temperature does not differ along the gradient. Keywords Resource quality Temperature Surrounding forest Microbial respiration Macroinvertebrates

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700