Microstructure and Properties of Porous Abradable Alumina Coatings Flame-Sprayed with Semi-molten Particles
详细信息    查看全文
  • 作者:Chang-Jiu Li ; Jiao Zou ; Hui-Bin Huo ; Jian-Tao Yao…
  • 关键词:abradable ; Al2O3 ; ceramic coating ; degree of melting ; flame spraying
  • 刊名:Journal of Thermal Spray Technology
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:25
  • 期:1-2
  • 页码:264-272
  • 全文大小:3,287 KB
  • 参考文献:1.M. Dorfman, Challenges and Strategies for the Growth of Thermal Spray Markets: The Six-Pilar-Plans, J. Therm. Spray. Technol., 2013, 22, p 559-563CrossRef
    2.C.U. Hardwicke and Y.C. Lau, Advances in Thermal Spray Coatings for Gas Turbines and Energy Generation: A Review, J. Therm. Spray. Technol., 2013, 22, p 564-576CrossRef
    3.D.R. Clarke, M. Oechsner, and N.P. Padture, Thermal-Barrier Coatings for More Efficient Gas Turbine Engines, MRS Bull., 2012, 37, p 891-898CrossRef
    4.S.B. Lattime and B.M. Steinetz, High-Pressure-Turbine Clearance Control Systems: Current Practices and Future Directions, J. Propuls. Power, 2004, 20, p 302-331CrossRef
    5.J.R. Davis, Handbook of Thermal Spray Technology, ASM International, Materials Park, OH, 2004, p 178
    6.H.I. Faraoun, T. Grosdidier, J.-L. Seichepine, D. Goran, H. Aourag, and C. Coddet, Improvement of Thermally Sprayed Abradable Coatings by Microstructure Control, Surf. Coat. Technol., 2006, 201, p 2303-2312CrossRef
    7.J. Matejicek, B. Kolman, J. Dubsky, K. Neufuss, N. Hopkins, and J. Zwick, Alternative Methods for Determination of Composition and Porosity in Abradable Materials, Mater. Charact., 2006, 57, p 17-29CrossRef
    8.E. Irissou, A. Dadouche, and R.S. Lima, Tribological Characterization of Plasma Sprayed CoNoCrAlY-BN Abradabe Coatings, J. Thermal Spray Technol., 2014, 23, p 252-261CrossRef
    9.Y. Nava, Z. Mutasim, and M. Coe, Ceramic Abradable Coatings for Applications up to 1100 °C, Thermal Spray 2001: New Surfaces for a New Millennium, C.C. Berndt, K.A. Khor, and E.F. Lugscheider, Ed., ASM International, Materials Park, 2001, p 119-126
    10.A. Ang, N. Sanpo, M.L. Sesso, S.Y. Kim, and C.C. Berndt, Thermal Spray Maps: Materials Genomics of Processing Technology, J. Therm. Spray. Technol., 2013, 22, p 1170-1183CrossRef
    11.U. Bardi, C. Giolli, A. Scrivani, G. Rizzi, F. Borgiolli, K. Partes, T. Seefeld, D. Sporer, and A. Refke, Development and Investigation on New Composite and Ceramic Coatngs as Possible Abradable Seals, J. Therm. Spray. Technol., 2008, 17, p 805-811CrossRef
    12.S. Ebert, R. Mucke, D. Mack, R. Vasen, D. Stove, T. Wobst, and S. Gebhard, Failure Mechanisms of Magnesia Spinel Abradable Coatings Under Thermal Cyclic Loading, J. Eur. Ceram. Soc., 2013, 33, p 3335-3343CrossRef
    13.D. Sporer, M. Dorfman, L. Xie, R. Refke, I. Giovannetti, and M. Giannozzi, Processing and Properties of Advanced Abradable Ceramic Coatings, Thermal Spray 2007: Global Coatings Solutions, B.R. Marple, M.M. Hyland, Y.C. Lau, C.-J. Li, R.S. Lima, and G. Montavon, Ed., ASM International, Materials Park, OH, 2007, p 495-500
    14.A. Scrivani, G. Rizzi, and C.C. Berndt, Enhanced Thick Thermal Barrier Coatings That Exhibit Varying Porosity, Mater. Sci. Eng. A, 2008, 476, p 1-7CrossRef
    15.A. Scrivani, G. Rizzi, U. Bardi, C. Giolli, M. Miranda, S. Ciattini, A. Fossati, and F. Borgioli, Thermal Fatigure Behavior of Thick and Porous Thermal Barrier Coatings Systems, J. Therm. Spray. Technol., 2007, 16, p 816-821CrossRef
    16.T. Steinke, G. Mauer, R. Vassen, D. Stover, D. Roth-Fagaraseanu, and M. Hancock, Process Design and Monitoring for Plasma Sprayed Abradable Coatings, J. Thermal Spray Technol., 2010, 19, p 756-764CrossRef
    17.J. Medricky, N. Curry, Z. Para, M. Vilemova, T. Chraska, and J. Johansson, Optimization of High Porosity Thermal Barrier Coatings Generated with a Porosity Former, J. Thermal Spray Technol., 2015, 24, p 622-628CrossRef
    18.C.-J. Li, G.J. Yang, C.X. Li, A Method to Produce Porous Materials, Chinese Patent, ZL 201210038361.6
    19.C.-J. Li, G.-J. Yang, and C.-X. Li, Development of the Particle Interface Bonding in Thermal Spray Coatings: A Review, J. Thermal Spray Technol., 2013, 22, p 192-206CrossRef
    20.G.-J. Yang, C.-X. Li, S. Hao, Y.-Z. Xing, E.-J. Yang, and C.-J. Li, Critical Bonding Temperature for the Splat Bonding Formation during Plasma Spraying of Ceramic Materials, Surf. Coat. Technol., 2013, 235, p 841-847CrossRef
    21.B. Chen, C.-J. Li, G.-J. Yang, J.-T. Yao, H.-B. Huo, and C.-X. Li, Fabrication of Porous Molybdenum by Controlling Spray Particle State, J. Thermal Spray Technol., 2012, 21, p 1032-1104CrossRef
    22.J.-T. Yao, J.-Q. Ren, H.-B. Huo, G.-J. Yang, C.-X. Li, and C.-J. Li, Characteristics of Porous Metal Alloy Deposition by Flame Spraying of Semi-molten Spray Particles, J. Thermal Spray Technol., 2014, 23, p 991-999CrossRef
    23.J.-T. Yao, G.-J. Yang, C.-X. Li, and C.-J. Li, Fabrication of Porous Stainless Steel Through Semi-molten Spray Particle Deposition by Flame-Spraying, Mater. Manuf. Process., 2014, 29(10), p 1253-1259CrossRef
    24.J. Zou, C.-J. Li, H.-B. Huo, B. Chen, C.-X. Li, G.-J. Yang, Formation of Abradable Alumina Ceramic Coatings Through Deposition of Semi-molten Ceramic Particles by Flame Spray, Thermal Spray 2012: Proceedings from the International Thermal Spray Conference and Exposition,May 21-24, 2012, Houston, TX, R.S. Lima, A. Agarwal, M.M. Hyland, Y.-C. Lau, C.-J. Li, A. McDonald, F.-L. Toma, Ed, ASM International, Materials Park, pp. 126-130
    25.S. Hao, C.-J. Li, and G.-J. Yang, Influence of Deposition Temperature on the Microstructures and Properties of Plasma-Sprayed Al2O3 Coatings, J. Thermal Spray Technol., 2011, 20, p 160-169CrossRef
    26.G.M. Nelson, J.A. Nychka, and A.G. McDonald, Structure, Phases, and Mechanical Response of Ti-Alloy Bioactive Glass Composite Coatings, Mater. Sci. Eng. C, 2014, 36, p 261-276CrossRef
    27.S.-L. Zhang, C.-J. Li, C.-X. Li, G.-J. Yang, and M. Liu, Deposition mechanism and microstructural evolution of plasma-sprayed superior La0.8Sr0.2Ga0.8Mg0.2O3 electrolyte for intermediate-temperature solid oxide fuel cells, J. Mater. Chem. A, 2015, 3, p 7535-7553CrossRef
    28.M. Boulos, P. Fauchais, A. Vardelle, and E. Pfender, Fundamentals of Plasma Particle Momentum and Heat Transfer, Plasma Spraying, Theory and Applications, R. Suryanarayanan, Ed., World Scientific Publishing Co, Singapore, 1993, p 3-57 CrossRef
    29.J.M. Houben, Remarks Concerning a Rational Plasma for Thermal Spraying, General Aspect of Thermal Spraying, Proc. 9th Inter. Thermal Spray Conference, The Hague, 19-23 May 1980, Nederlands Instituut voor Lastechniek, Netherland, p 143-154
  • 作者单位:Chang-Jiu Li (1)
    Jiao Zou (1)
    Hui-Bin Huo (1)
    Jian-Tao Yao (1)
    Guan-Jun Yang (1)

    1. State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi Province, 710049, People’s Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Surfaces and Interfaces and Thin Films
    Tribology, Corrosion and Coatings
    Materials Science
    Characterization and Evaluation Materials
    Operating Procedures and Materials Treatment
    Analytical Chemistry
  • 出版者:Springer Boston
  • ISSN:1544-1016
文摘
High-efficiency gas turbines require high-temperature sealing by use of abradable porous ceramic coatings to increase engine efficiency. In this study, porous Al2O3 coatings were deposited by flame spraying; the coatings were applied in a semi-molten state by controlled melting of the sprayed powder particles. The effects of the degree of melting of the sprayed particles, which depends on spraying conditions, on coating microstructure and porosity were investigated. The degree of melting of the sprayed particles was characterized by use of 3D confocal laser microscopy. The porosity of the coating was estimated by image analysis. The results showed that the degree of melting of alumina particles can be changed from 70 to 30%, and thus coating porosity can be increased from 30% up to over 70%. The standard hardness test yielded no useful data for porous coatings deposited by use of sprayed particles with a degree of melting <60%, and a hardness of 32–75 HR15Y for Al2O3 coatings deposited by use of sprayed particles with a degree of melting >60%. Pin-on-disk abrasion tests, performed at room temperature by use of an Inconel 738 (IN738) nickel-based superalloy pin with a spherical tip 5 mm in diameter, were conducted on the porous alumina coating to evaluate its abrasion behavior. It was found that for coatings of hardness <32 HR15Y and porosity >40% the wear weight loss of the IN738 pin was negligible despite the high rate of wear of the coating. It is evident that flame-sprayed porous alumina coatings of high porosity prepared by this approach have potential for use as abradable coatings for gas turbines operating at high temperatures.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700