Polystyrene-based blend nanorods with gradient composition distribution
详细信息    查看全文
  • 作者:Hui Wu (1)
    ZhaoHui Su (2)
    Yuki Terayama (3)
    Atsushi Takahara (13) takahara@cstf.kyushu-u.ac.jp
  • 关键词:nanorods &#8211 ; gradient composition distribution &#8211 ; polymer blends &#8211 ; anodic aluminum oxide &#8211 ; micro ; FTIR &#8211 ; nano ; TA
  • 刊名:SCIENCE CHINA Chemistry
  • 出版年:2012
  • 出版时间:May 2012
  • 年:2012
  • 卷:55
  • 期:5
  • 页码:726-734
  • 全文大小:888.7 KB
  • 参考文献:1. Martin CR. Nanomaterials: A membrane-based synthetic approach. Science, 1994, 266: 1961–1966
    2. Steinhart M. Supramolecular organization of polymeric materials in nanoporous hard templates. Adv Polym Sci, 2008, 220: 123–187
    3. Shin K, Xiang HQ, Moon SI, Kim T, McCarthy TJ, Russell TP. Curving and frustrating flatland. Science, 2004, 306: 76–76
    4. Xiang HQ, Shin K, Kim T, Moon SI, McCarthy TJ, Russell TP. Block copolymers under cylindrical confinement. Macromolecules, 2004, 37: 5660–5664
    5. Sun YM, Steinhart M, Zschech D, Adhikari R, Michler GH, G枚sele U. Diameter-dependence of the morphology of PS-b-PMMA nanorods confined within ordered porous alumina templates. Macromol Rapid Commun, 2005, 26: 369–375
    6. Dobriyal P, Xiang H, Kazuyuki M, Chen J-T, Jinnai H, Russell TP. Cylindrically confined diblock copolymers. Macromolecules, 2009, 42: 9082–9088
    7. Woo E, Huh J, Jeong YG, Shin K. From homogeneous to heterogeneous nucleation of chain molecules under nanoscopic cylindrical confinement. Phys Rev Lett, 2007, 98: 136103
    8. Duran H, Steinhart M, Butt HJ, Floudas G. From heterogeneous to homogeneous nucleation of isotactic poly(propylene) confined to nanoporous alumina. Nano Lett, 2011, 11: 1671–1675
    9. Steinhart M, G枚ring P, Dernaika H, Prabhukaran M, G枚sele U, Hempel E, Thurn-Albrecht T. Coherent kinetic control over crystal orientation in macroscopic ensembles of polymer nanorods and nanotubes. Phys Rev Lett, 2006, 97: 027801
    10. Wu H, Wang W, Yang H, Su Z. Crystallization and orientation of syndiotactic polystyrene in nanorods. Macromolecules, 2007, 40: 4244–4249
    11. Steinhart M, Senz S, Wehrspohn RB, G枚sele U, Wendorff JH. Curvature-directed crystallization of poly(vinylidene difluoride) in nanotube walls. Macromolecules, 2003, 36: 3646–3651
    12. Shin K, Woo E, Jeong YG, Kim C, Huh J, Kim KW. Crystalline structures, melting, and crystallization of linear polyethylene in cylindrical nanopores. Macromolecules, 2007, 40: 6617–6623
    13. Wu H, Wang W, Huang Y, Su Z. Orientation of syndiotactic polystyrene crystallized in cylindrical nanopores. Macromol Rapid Commun, 2009, 30: 194–198
    14. Wu H, Wang W, Su ZH. Crystallization and orientation of polyethelene in anodic aluminum oxide templates. Acta Polym Sin, 2009, 425–429
    15. Martin J, Mijangos C, Sanz A, Ezquerra TA, Nogales A. Segmental dynamics of semicrystalline poly(vinylidene fluoride) nanorods. Macromolecules, 2009, 42: 5395–5401
    16. Lutkenhaus JL, McEnnis K, Serghei A, Russell TP. Confinement effects on crystallization and curie transitions of poly(vinylidene fluoride-co-trifluoroethylene). Macromolecules, 2010, 43: 3844–3850
    17. Shin K, Obukhov S, Chen JT, Huh J, Hwang Y, Mok S, Dobriyal P, Thiyagarajan P, Russell TP. Enhanced mobility of confined polymers. Nat Mater, 2007, 6: 961–965
    18. Martin J, Krutyeva M, Monkenbusch M, Arbe A, Allgaier J, Radulescu A, Falus P, Maiz J, Mijangos C, Colmenero J, Richter D. Direct observation of confined single chain dynamics by neutron scattering. Phys Rev Lett, 2010, 104: 197801
    19. Serghei A, Chen D, Lee DH, Russell TP. Segmental dynamics of polymers during capillary flow into nanopores. Soft Matter, 2010, 6: 1111–1113
    20. Wu H, Wang W, Huang Y, Wang C, Su Z. Polymorphic behavior of syndiotactic polystyrene crystallized in cylindrical nanopores. Macromolecules, 2008, 41: 7755–7758
    21. Zhang MF, Dobriyal P, Chen JT, Russell TP, Olmo J, Merry A. Wetting transition in cylindrical alumina nanopores with polymer melts. Nano Lett, 2006, 6: 1075–1079
    22. Wu H, Su Z, Takahara A. Molecular composition distribution of polycarbonate/ polystyrene blends in cylindrical nanopores. Polym J, 2011, 43: 600–605
    23. Wu H, Su Z, Takahara A. Gradient composition distribution in poly(2,6-dimethylphenylene oxide)/polystyrene blend nanorods. Soft Matter, 2011, 7: 1868–1873
    24. Martin J, Mijangos C. Tailored polymer-based nanofibers and nanotubes by means of different infiltration methods into alumina nanopores. Langmuir, 2009, 25: 1181–1187
    25. Garcia-Gutierrez MC, Linares A, Hernandez JJ, Rueda DR, Ezquerra TA, Poza P, Davies RJ. Confinement-induced one-dimensional ferroelectric polymer arrays. Nano Lett, 2010, 10: 1472–1476
    26. Chen D, Chen JT, Glogowski E, Emrick T, Russell TP. Thin film instabilities in blends under cylindrical confinement. Macromol Rapid Commun, 2009, 30: 377–383
    27. Ai SF, Lu G, He Q, Li JB. Highly flexible polyelectrolyte nanotubes. J Am Chem Soc, 2003, 125: 11140–11141
    28. Azzaroni O, Lau KHA. Layer-by-layer assemblies in nanoporous templates: nano-organized design and applications of soft nanotechnology. Soft Matter, 2011, 7: 8709–8724
    29. Cepak VM, Martin CR. Preparation of polymeric micro- and nanostructures using a template-based deposition method. Chem Mater, 1999, 11: 1363–1367
    30. Zheng RK, Chan HLW, Choy CL. A simple template-based hot-press method for the fabrication of metal and polymer nanowires and nanotubes. Nanotechnology, 2005, 16: 1928–1934
    31. Kimura T, Kobayashi M, Morita M, Takahara A. Preparation of poly(vinylidene fluoride-co-trifluoroethylene) film with a hydrophilic surface by direct surface-initiated atom transfer radical polymerization without pretreatment. Chem Lett, 2009, 38: 446–447
    32. Quiram DJ, Register RA, Marchand GR, Adamson DH. Chain orientation in block copolymers exhibiting cylindrically confined crystallization. Macromolecules, 1998, 31: 4891–4898
    33. Huang P, Zhu L, Cheng SZD, Ge Q, Quirk RP, Thomas EL, Lotz B, Hsiao BS, Liu LZ, Yeh FJ. Crystal orientation changes in two-dimensionally confined nanocylinders in a poly(ethylene oxide)-b-polystyrene/polystyrene blend. Macromolecules, 2001, 34: 6649–6657
    34. Sun L, Zhu L, Ge Q, Quirk RP, Xue CC, Cheng SZD, Hsiao BS, Avila-Orta CA, Sics I, Cantino ME. Comparison of crystallization kinetics in various nanoconfined geometries. Polymer, 2004, 45: 2931–2939
    35. Huang P, Guo Y, Quirk RP, Ruan JJ, Lotz B, Thomas EL, Hsiao BS, Avila-Orta CA, Sics I, Cheng SZD. Comparison of poly(ethylene oxide) crystal orientations and crystallization behaviors in nano-confined cylinders constructed by a poly(ethylene oxide)-b-polystyrene diblock copolymer and a blend of poly(ethylene oxide)-b-polystyrene and polystyrene. Polymer, 2006, 47: 5457–5466
    36. Nojima S, Ohguma Y, Kadena K, Ishizone T, Iwasaki Y, Yamaguchi K. Crystal orientation of poly(ɛ-caprolactone) homopolymers confined in cylindrical nanodomains. Macromolecules, 2010, 43: 3916–3923
    37. Chung TM, Wang TC, Ho RM, Sun YS, Ko BT. Polymeric crystallization under nanoscale 2d spatial confinement. Macromolecules, 2010, 43: 6237–6240
    38. Li D, Xia YN. Electrospinning of nanofibers: Reinventing the wheel? Adv Mater, 2004, 16: 1151–1170
    39. Liu Y, Cui L, Guan FX, Gao Y, Hedin NE, Zhu L, Fong H. Crystalline morphology and polymorphic phase transitions in electrospun nylon-6 nanofibers. Macromolecules, 2007, 40: 6283–6290
    40. Zhang CF, Liu YH, Liu SX, Li HZ, Huang K, Pan QH, Hua XH, Hao CW, Ma QF, Lv CY, Li WH, Yang ZL, Zhao Y, Wang DJ, Lai GQ, Jiang JX, Xu YZ, Wu JG. Crystalline behaviors and phase transition during the manufacture of fine denier PA6 fibers. Sci China Chem, 2009, 52: 1835–1842
    41. Yano T, Yah WO, Yamaguchi H, Terayama Y, Nishihara M, Kobayashi M, Takahara A. Preparation and surface characterization of surface-modified electrospun poly(methyl methacrylate) copolymer nanofibers. Chem Lett, 2010, 39: 1110–1111
    42. Zhang H, Zhao CG, Zhao YH, Tang GW, Yuan XY. Electrospinning of ultrafine core/shell fibers for biomedical applications. Sci China Chem, 2010, 53: 1246–1254
    43. Suh KY, Kim YS, Lee HH. Capillary force lithography. Adv Mater, 2001, 13: 1386–1389
    44. Hu ZJ, Jonas AM. Control of crystal orientation in soft nanostructures by nanoimprint lithography. Soft Matter, 2010, 6: 21–28
    45. Honda K, Morita M, Masunaga H, Sasaki S, Takata M, Takahara A. Room-temperature nanoimprint lithography for crystalline poly (fluoroalkyl acrylate) thin films. Soft Matter, 2010, 6: 870–875
    46. He XH, Song M, Liang HJ, Pan CY. Self-assembly of the symmetric diblock copolymer in a confined state: Monte Carlo simulation. J Chem Phys, 2001, 114: 10510–10513
    47. Li WH, Wickham RA, Garbary RA. Phase diagram for a diblock copolymer melt under cylindrical confinement. Macromolecules, 2006, 39: 806–811
    48. Zhu YT, Jiang W. Self-assembly of diblock copolymer mixtures in confined states: a Monte Carlo study. Macromolecules, 2007, 40: 2872–2881
    49. Yu B, Li BH, Jin QH, Ding DT, Shi AC. Confined self-assembly of cylinder-forming diblock copolymers: Effects of confining geometries. Soft Matter, 2011, 7: 10227–10240
    50. Ma Y, Hu WB, Hobbs J, Reiter G. Understanding crystal orientation in quasi-one-dimensional polymer systems. Soft Matter, 2008, 4: 540–543
    51. Xiao XQ, Huang YM, Feng JA, Liu HL, Hu Y. Microphase separation of a diblock copolymer dispersed in nanorod arrays grafted on a plate: a Monte Carlo study. Macromol Theory Simul, 2011, 20: 124–132
    52. Utracki LA. Polymer Alloys and Blends. New York: Hanser Publ., 1989
    53. Agari Y, Shimada M, Ueda A, Nagai S. Preparation, characterization and properties of gradient polymer blends: discussion of poly(vinyl chloride)/poly(methyl methacrylate) blend films containing a wide compositional gradient phase. Macromol Chem Phys, 1996, 197: 2017–2033
    54. Patterson D, Robard A. Thermodynamics of polymer compatibility. Macromolecules, 1978, 11: 690–695
    55. Kim WN, Burns CM. Thermal-behavior, morphology, and the determination of the Flory-Huggins interaction parameter of polycarbonate polystyrene blends. J Appl Polym Sci, 1987, 34: 945–967
    56. Fekete E, Foldes E, Damsits F, Pukanszky B. Interaction-structure-property relationships in amorphous polymer blends. Polym Bull, 2000, 44: 363–370
    57. Masuda H, Fukuda K. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science, 1995, 268: 1466–1468
    58. Li AP, Muller F, Birner A, Nielsch K, G枚sele U. Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina. J Appl Phys, 1998, 84: 6023–6026
    59. Lee SN, Stolarski V, Letton A, Laane J. Studies of bisphenol-A-polycarbonate aging by Raman difference spectroscopy. J Mol Struct, 2000, 521: 19–23
    60. Liang CY, Krimm S. Infrared spectra of high polymers. VI. Polystyrene. J Polym Sci, 1958, 27: 241–254
    61. Kong XM, Xie XM, Yang R, Wang KH, Zhang ZM, Lei H. Determination of the composition distribution of polymer blend films by using microscopic FTIR. Spectrosc Spect Anal, 2000, 20: 623–625
    62. Nakashima K, Ren Y, Nishioka T, Tsubahara N, Noda I, Ozaki Y. Two-dimensional infrared correlation spectroscopy studies of polymer blends: conformational changes and specific interactions in blends of atactic polystyrene and poly(2,6-dimethyl-1,4-phenylene ether). J Phys Chem B, 1999, 103: 6704–6712
    63. Wellinghoff ST, Koenig JL, Baer E. Spectroscopic examination of chain conformation and bonding in poly(phenylene oxide)-polysty-rene blends. J Polym Sci, Part B: Polym Phys, 1977, 15: 1913–1925
    64. Yang FZ, Wornyo E, Gall K, King WP. Thermomechanical formation and recovery of nanoindents in a shape memory polymer studied using a heated tip. Scanning, 2008, 30: 197–202
    65. Maruf SH, Ahn DU, Greenberg AR, Ding Y. Glass transition behaviors of interfacially polymerized polyamide barrier layers on thin film composite membranes via nano-thermal analysis. Polymer, 2011, 52: 2643–2649
    66. Zhu S, Liu Y, Rafailovich MH, Sokolov J, Gersappe D, Winesett DA, Ade H. Confinement-induced miscibility in polymer blends. Nature, 1999, 400: 49–51
    67. Liu CY, Zhang BQ, He JS, Keunings R, Bailly C. Confinement effects on chain and glass dynamics in immiscible polymer blends. Macromolecules, 2009, 42: 7982–7985
    68. Lomellini P. Viscosity-temperature relationships of a polycarbonate melt: williams-landel-ferry versus arrhenius behavior. Makromol Chem, 1992, 193: 69–79
    69. Fox TG, Flory PJ. The glass temperature and related properties of polystyrene. Influence of molecular weight. J Polym Sci, 1954, 14: 315–319
  • 作者单位:1. Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, 819-0395 Japan2. State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China3. Graduate School of Engineering, Kyushu University, Fukuoka, 819-0395 Japan
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Chinese Library of Science
    Chemistry
  • 出版者:Science China Press, co-published with Springer
  • ISSN:1869-1870
文摘
The polystyrene-based polymer blends, partially miscible poly(bisphenol A carbonate)/polystyrene (PC/PS) and completely miscible poly(2,6-dimethylphenylene oxide)/polystyrene (PPO/PS), in nanorods with gradient composition distribution were discussed. The polymer blend nanorods were prepared by infiltrating the polymer blends into nanopores of anodic aluminum oxide (AAO) templates via capillary action. Their morphology was investigated by micro-Fourier transform infrared spectroscopy (micro-FTIR) and nano-thermal analysis (nano-TA) with spatial resolution. The composition gradient of polymer blends in the nanopores is governed by the difference of viscosity and miscibility between the two polymers in the blends and the pore diameter. The capillary wetting of porous AAO templates by polymer blends offers a unique method to fabricate functional nanostructured materials with gradient composition distribution for the potential application to nanodevices.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700