Oxyfluoroborate host glass for upconversion application: phonon energy calculation
详细信息    查看全文
  • 作者:Manal Abdel-Baki ; Fouad El-Diasty
  • 关键词:Glass ; Phonon energy ; Upconversion
  • 刊名:Optical Review
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:23
  • 期:2
  • 页码:284-289
  • 全文大小:2,077 KB
  • 参考文献:1.Abdel-Baki, M., El-Diasty, F.: Glasses for photonic technologies. Inter. J. Opt. Appl. 3, 125–137 (2013)
    2.Rai, A., Rai, S.B., Mahato, K.K.: Frequency upconversion involving quartets of ions in a Pr3+/Eu3+ oxyfluoroborate glass. Chem. Phys. Lett. 414, 222–225 (2005)ADS CrossRef
    3.Mahato, K.K., Rai, S.B.: Laser spectroscopic studies of Tb3+-doped oxyfluoroborate glass. Spectrochim. Acta A 56, 2333–2340 (2000)ADS CrossRef
    4.Kumar, A., Rai, D.K., Rai, S.B.: Luminescence of Gd3+ ions doped in oxyfluoroborate glass. Solid State Commun. 117, 387–392 (2001)ADS CrossRef
    5.Pisarska, J., Ryba-Romanowski, W., Dominiak-Dzik, G., Goryczka, T., Pisarski, W.A.: Nd-doped oxyfluoroborate glasses and glass-ceramics for NIR laser applications. J. Alloys Comp. 451, 223–225 (2008)CrossRef
    6.Bahadur, A., Dwivedi, Y., Rai, S.B.: Optical properties of cerium doped oxyfluoroborate glass. Spectrochim. Acta A: Mol. Biomol. Spect. 110, 400–403 (2013)ADS CrossRef
    7.Mahato, K.K., Rai, A., Rai, S.B.: Optical properties of Dy3+ doped in oxyfluoroborate glass. Spectrochim. Acta A 61, 431–436 (2005)ADS CrossRef
    8.Tver’yanovich, Y.S., Pastor, A.A.: Resonant optical nonlinearity in vitreous semiconductors. Glass Phys. Chem. 29, 328–329 (2003)CrossRef
    9.Mamedov, A.A., Noginov, M.A., Smirnov, V.A., Sokolov, V.V., Shcherbakov, I.A.: Application of sulfide glasses as active media of diode-pumped neodymium lasers. Fiz. Khim. Stekla 17, 446–450 (1991)
    10.El-Diasty, F., Abdel-Baki, M., Abdel-Wahab, F. A.: Oxyfluoro aluminum-borate host glass: Interband gap study and estimation of radiative lifetime for luminescent dopant ions. Opt. Quant. Electron 48, (2016)
    11.Mott, N.F., Davis, E.A.: Electronic Processes in Non-Crystalline Materials. Oxford Univ Press, Oxford (1979)
    12.Tauc, J.: Amorphous and liquid semiconductors, p. 159. Plenum Press, London (1974)CrossRef
    13.Pye, L.D., Frechette, V.D., Kreidl, N.J.: Borate glasses: structure, properties and applications. Plenum, New York (1978)CrossRef
    14.Duffy, J.A.: Ultraviolet transparency of glass: a chemical approach in terms of band theory, polarisability and electronegativity. Phys. Chem. Glasses 42, 151–157 (2001)
    15.Abdel-Baki, M., Abdel Wahab, F., El-Diasty, F.: One-photon band gap engineering of borate glass doped with ZnO for photonics applications. J. Appl. Phys. 111, 073506 (2012)ADS CrossRef
    16.Holleman, A. F., Wiberg, E.:Inorganic Chemistry. Academic Press P, 135, (2001)
    17.Rada, S., Pascuta, P., Culea, M., Pop, L., Culea, E.: Structural properties of the boro-bismuthate glasses containing gadolinium ions. Vib. Spectrosc. 48, 255–258 (2008)CrossRef
    18.Saddeek, Y.B., Shaaban, E.R., Moustafa, H.M.: Spectroscopic properties, electronic polarizability, and optical basicity of Bi2O3–Li2O–B2O3 glasses. Phys. B 403, 2399–2407 (2008)ADS CrossRef
    19.Kamitsos, E.I., Karakassides, M.A., Chryssikos, G.D.: Vibrational spectra of magnesium sodium borate glasses: 2. Raman and mid-infrared investigation of network structure. J. Phys. Chem. 91, 1073–1079 (1987)CrossRef
    20.Pascuta, P., Borodi, G., Culea, E.: Structural investigation of bismuth borate glass ceramics containing gadolinium ions by X-ray diffraction and FTIR spectroscopy. J. Mater. Sci.: Mater. Electron. 20, 360–365 (2009)
    21.Ali, K.A., El-Din Mostafa, A.G.: Study of the structure and some physical properties of sodium-boro-Pphosphate glasses containing antimony and iron oxides. Turk. J. Phys. 27, 225–233 (2003)
    22.Varsamis, C.P.E., Kamitsos, E.I., Minami, T.: Structural investigation of superionic AgI-containing orthoborate glasses. J. Non-Cryst. Solids 345 and 346, 93–98 (2004)CrossRef
    23.Chakrabarti, R., Annapurna, K., Buddhudu, : Emission analysis of Eu3+ : CaO–La2O3–B2O3 glass. J. Non-Cryst. Solids 353, 1422–1426 (2007)ADS CrossRef
    24.Denning, J.H., Boss, S.D.: The vibrational spectra and structures of some rare-earth borates. Spectrochim. Acta A Mol. Biomol. Spectrosc. 28, 1775–1785 (1972)ADS CrossRef
    25.Ren, M., Lin, J.H., Dong, Y., Yang, L.Q., Su, M.Z., You, L.P.: Structure and phase transition of GdBO3. Chem. Mater. 11, 1576–1580 (1999)CrossRef
    26.Kamitsos, E.I., Karakassides, M.A., Patsis, A.P.: Spectroscopic study of carbonate retention in high-basicity borate glasses. J. Non-Cryst. Solids 111, 252–262 (1989)ADS CrossRef
    27.Kamitsos, E.I., Karakassides, M.A.: Structural studies of binary and pseudobinary sodium borate glasses of high sodium content. Phys. Chem. Glasses 30, 19–26 (1989)
    28.Kamitsos, E.I., Patsis, A.P., Karakassides, M.A., Chryssikos, G.D.: Infrared reflectance spectra of lithium borate glasses. J. Non-Cryst. Solids 126, 52–67 (1990)ADS CrossRef
    29.Varsamis, C.P., Kamitsos, E.I., Chryssikos, G.D.: Structure of fast-ion-conducting AgI-doped borate glasses in bulk and thin film forms. Phys. Rev. B. 60, 3885–3898 (1999)ADS CrossRef
    30.Winterstein-Beckmann, A., Möncke, D., Palles, D., Kamitsos, E.I., Wondraczek, L.: Structure–property correlations in highly modified Sr, Mn-borate glasses. J. Non-Cryst. Solids 376, 165–174 (2013)ADS CrossRef
    31.Duffy, J.A.: The importance of π-bonding in glass chemistry: borate glasses. Phys. Chem. Glasses Eur. J. Glass Sci. Technol. B 49, 317–325 (2008)
    32.Varshneya, A.K.: Fundamentals of inorganic glasses. Academic Press Inc., New York (1994)
    33.Upender, G., Ramesh, S., Prasada, M., Sathe, V.G., Mouli, V.C.: Optical band gap, glass transition temperature and structural studies of (100–2x)TeO2–xAg2O–xWO3 glass system. J. Alloys Comp. 504, 468–474 (2010)CrossRef
    34.Abdel-Baki, M., Abdel Wahab, F.A., Radi, A., El-Diasty, F.: Factors affecting optical dispersion in borate glass systems. J. Phys. Chem. Solids 68, 1457–1470 (2007)ADS CrossRef
    35.Essick, J.M., Mather, R.T.: Characterization of a bulk semiconductor’s band gap via a near-absorption edge optical transmission experiment. Am. J. Phys. 61, 646–649 (1993)ADS CrossRef
    36.Som, T., Karmakar, B.: Green and red fluorescence upconversion in neodymium-doped low phonon antimony glasses. J. Alloys Comp. 476, 383–389 (2009)CrossRef
    37.Som, T., Karmakar, B.: Infrared-to-red upconversion luminescence in samarium-doped antimony glasses. J. Lumine. 128, 1989–1996 (2008)CrossRef
    38.Miller, P.J., Cody, C.A.: Infrared and Raman investigation of vitreous antimony trioxide. Spectrochim. Acta A 38, 555–559 (1982)ADS CrossRef
    39.Karmakar, B., Dwivedi, R.N.: FT-IRRS, UV–Vis–NIR absorption and green upconversion in Er3+ doped lead silicate glass. J. Non-Cryst. Solids 342, 132–139 (2004)ADS CrossRef
    40.Sun, H., Xu, S., Dai, S., Wen, L., Zhang, J., Hu, L., Jiang, Z.: Efficient frequency upconversion emission in Er3+-doped novel strontium lead bismuth glass. J. Non-Cryst. Solids 351, 288–292 (2005)ADS CrossRef
  • 作者单位:Manal Abdel-Baki (1)
    Fouad El-Diasty (2)

    1. Department of Glass, National Research Center, Dokki, 12311, Giza, Egypt
    2. Physics Department, Faculty of Science, Ain Shams University, Abbasia, 11566, Cairo, Egypt
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Electromagnetism, Optics and Lasers
  • 出版者:The Optical Society of Japan, co-published with Springer-Verlag GmbH
  • ISSN:1349-9432
文摘
Reducing the glass phonon energy is an essential procedure to achieve high efficient radiative upconversion process. The degree of covalence of chemical bonds is responsible for the high oscillator strength of intracenter transitions in rare-earth ions. So, conversion covalent to ionic glass character is proposed as a structure-sensitive criterion that controls the phonon energy of the glasses. A series of oxyfluoro aluminum-borate host glasses used for upconversion application is prepared by the conventional melt-quenching technique. Through lithium oxide substitution by lithium fluoride, the ionic-covalent property of Li+ ion successes to regulate the band gap energies of the studied glasses. Furthermore, a new method to determine the glass phonon energy is offered.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700