17) was designed, prepared evaluated in vitro towards human acetyl/butyryl cholinesterase (hAChE, hBChE) and compared with the series of 7-MEOTA-amantadine thioureas (4-strong class="EmphasisTypeBold">10). The heterodimers have different length of linkers combining 7-MEOTA and amantadine moieties. In comparison with 7-MEOTA, the newly synthesized compounds were better inhibitors of both cholinesterases. The urea analogues did not have the anticipated benefit of increased inhibitory activity and have comparable IC50 values with thiourea derivatives." />
Design, synthesis and in vitro testing of 7-methoxytacrine-amantadine analogues: a novel cholinesterase inhibitors for the treatment of Alzheimer’s disease
详细信息    查看全文
  • 作者:Katarina Spilovska ; Jan Korabecny ; Anna Horova…
  • 关键词:Alzheimer’s disease ; Inhibitor ; Acetylcholinesterase ; Butyrylcholinesterase ; Amantadine ; 7 ; MEOTA
  • 刊名:Medicinal Chemistry Research
  • 出版年:2015
  • 出版时间:June 2015
  • 年:2015
  • 卷:24
  • 期:6
  • 页码:2645-2655
  • 全文大小:850 KB
  • 参考文献:Bartolini M, Bertuci C, Bolognesi ML, Cavalli A, Melchiorre C, Andrisano V (2007) Insight into the kinetic of amyloid beta (1-2) peptide self-aggregation: elucidation of inhibitors-mechanism of action. ChemBioChem 8(17):2152-161PubMed View Article
    Bielavsky J (1977) Analogues of 9-amino-1,2,3,4-tetrahydroacridine. Collect Czechoslov Chem Commun 42(9):2802-808View Article
    Blanpied TA, Clarke RJ, Johnson JW (2005) Amantadine inhibits NMDA receptors by accelerating channel closure during channel block. J Neurosci 25(13):3312-322PubMed View Article
    Bormann J (1989) Memantine is a potent blocker of N-methyl-d -aspartate (NMDA) receptor channels. Eur J Pharmacol 166(3):591-92PubMed View Article
    Caumont AS, Octave JN (2006) Amantadine and memantine induce the expression of the glial cell line-derived neurotrophic factor in C6 glioma cells. Neurosci Lett 394(3):196-01PubMed View Article
    Cavalli A, Bolognesi ML, Minarini A, Rosini M, Tumiatti V, Recanatini M, Melchiorre C (2008) Multi-target- directed ligands to combat neurodegenerative diseases. J Med Chem 51(3):347-72PubMed View Article
    Craig LA, Hong NS, McDonald RJ (2011) Revisiting the cholinergic hypothesis in the development of Alzheimer’s disease. Neurosci Biobehav Rev 35(6):1397-409PubMed View Article
    Cummings JL (2004) Treatment of Alzheimer’s disease: current and future therapeutic approaches. Rev Neurol Dis 1(2):60-9PubMed
    Darvesh S, Hopkins DA, Geula C (2003) Neurobiology of butyrylcholinesterase. Nat Rev Neurosci 4(2):131-38PubMed View Article
    Dejmek L (1990) 7-MEOTA. Drugs Future 15:126-29View Article
    Ellman GL, Courtney KD, Andres V, Feather-Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88-5PubMed View Article
    Forest Pharmaceuticals Inc (2003) Namenda package insert. Forest Pharmaceuticals Inc., St. Louis
    Gauthier S, Poirier J (2008) Current and future management of Alzheimer’s disease. Alzheimers Dement 4(1 Suppl 1):S48–S50PubMed View Article
    Giacobini E (2004) Cholinesterase inhibitors: new roles and therapeutic alternatives. Pharmacol Res 50(4):433-40PubMed View Article
    Greig NH, Utsuki T, Yu QS, Zhu X, Holloway HW, Perry T, Lee B, Ingram DK, Lahiri DK (2001) A new therapeutic target in Alzheimer’s disease treatment: attention to butyrylcholinesterase. Curr Med Res Opin 17(3):159-65PubMed View Article
    Greig NH, Utsuki T, Ingram DK, Wang Y, Pepeu G, Scali C, Yu QS, Mamczarz J, Holloway HW, Giordano T, Chen D, Furukawa K, Sambamurti K, Brossi A, Lahiri DK (2005) Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lower Alzheimer beta-amyloid peptide in rodent. Proc Natl Acad Sci USA 102(47):17213-7218PubMed Central PubMed View Article
    Harel M, Schalk I, Ehret-Sabatier L, Bouet F, Goeldner M, Hirth C, Axelsen PH, Silman I, Sussman JL (1993) Quaternary ligand binding to aromatic residues in the active-site gorge of acetylcholinesterase. Proc Natl Acad Sci USA 90(19):9031-035PubMed Central PubMed View Article
    Jahn H (2013) Memory loss in Alzheimer’s disease. Dialogues Clin Neurosci 15(4):445-54PubMed Central PubMed
    Korabecny J, Musilek K, Holas O, Binder J, Zemek F, Pohanka M, Opletalova V, Dohnal V, Kuca K (2010) Synthesis and in vitro evaluation of N-alkyl-7-methoxytacrine hydrochlorides as potential cholinesterase inhibitors in Alzheimer’s disease. Bioorg Med Chem Lett 20(20):6093-095PubMed View Article
    Korabecny J, Musilek K, Zemek F, Horova A, Holas O, Nepovimova E, Opletalova V, Hroudova J, Fisar Z, Jung YS, Kuca K (2011) Synthesis and in vitro evaluation of 7-methoxy-N-(pent-4-enyl)-1,2,3,4-tetrahydroacridin-9-amine—new tacrine derivate with cholinergic properties. Bioorg Med Chem Lett 21(21):6563-566PubMed View Article
    Korabecny J, Dolezal R, Cabelova P, Horova A, Hruba E, Ricny J, Sedlacek L, Nepovimova E, Spilovska K, Andrs M, Musilek K, Opletalova V, Sepsova V, Ripova D, Kuca K (2014) 7-MEOTA-donepezil like compounds as cholinesterase inhibitors: synthesis, pharmacological evaluation, molecular modeling and QSAR studies. Eur J Med Chem 82:426-38PubMed View Article
    Kotermanski SE, Johnson JW (2009) Mg2?+?imparts NMDA receptor subtype selectivity to the Alzheimer’s drug memantine. J Neurosci 29(9):2774-779PubMed Central PubMed View Article
    Krall WJ, Sramek JJ (1999) Cholinesterase inhibitors: a therapeutic strategy for Alzheimer disease. Ann Pharmacother 33(4):441-50PubMed View Article
    Kryger G, Harel M, Giles K, Toker L, Velan B, Lazar A, Kronman C, Barak D, Ariel N, Shafferman A, Silman I, Sussman JL (2000) Structures of recombinant native and E202Q mutant human acetylcholinesterase complexed with the snake-venom toxin fasciculin-II. Acta Crystallogr D Biol Crystalogr 56(Pt 11):1385-394View Article
    Lahiri DK, Farlow MR, Sambamurti K, Greig NH, Giacobini E, Schneider LS (2003) A critical analysis of new molecular targ
  • 作者单位:Katarina Spilovska (1) (2) (6)
    Jan Korabecny (1) (2) (3) (6)
    Anna Horova (1)
    Kamil Musilek (2) (5)
    Eugenie Nepovimova (1) (2)
    Lucie Drtinova (1)
    Zuzana Gazova (5)
    Katarina Siposova (5)
    Rafael Dolezal (2) (3)
    Daniel Jun (1) (2)
    Kamil Kuca (2) (3)

    1. Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
    2. Biomedical Research Centre, University Hospital, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
    6. National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
    3. Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic
    5. Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01, Kosice, Slovak Republic
  • 刊物主题:Pharmacology/Toxicology; Biochemistry, general; Cell Biology;
  • 出版者:Springer US
  • ISSN:1554-8120
文摘
A series of cholinesterase inhibitors acting as dual binding site heterodimers for the management of Alzheimer’s disease were developed. The series of 7-methoxytacrine (7-MEOTA)-amantadine ureas (11-strong class="EmphasisTypeBold">17) was designed, prepared evaluated in vitro towards human acetyl/butyryl cholinesterase (hAChE, hBChE) and compared with the series of 7-MEOTA-amantadine thioureas (4-strong class="EmphasisTypeBold">10). The heterodimers have different length of linkers combining 7-MEOTA and amantadine moieties. In comparison with 7-MEOTA, the newly synthesized compounds were better inhibitors of both cholinesterases. The urea analogues did not have the anticipated benefit of increased inhibitory activity and have comparable IC50 values with thiourea derivatives.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700