Shear-free anisotropic cosmological models in \({\varvec{f}\,\varvec{(R)}}\)
详细信息    查看全文
  • 作者:Amare Abebe ; Davood Momeni ; Ratbay Myrzakulov
  • 关键词:Shear ; free spacetimes ; Homogeneity ; Cosmic anisotropy ; Modified gravity ; Expansion ; Inflation ; Cosmological perturbations
  • 刊名:General Relativity and Gravitation
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:48
  • 期:4
  • 全文大小:621 KB
  • 参考文献:1.Capozziello, S., De Laurentis, M.: Extended theories of gravity. Phys. Rep. 509, 167–321 (2011)ADS MathSciNet CrossRef
    2.Modesto, L.: Super-renormalizable quantum gravity. Phys. Rev. D 86, 044005 (2012)ADS CrossRef
    3.Modesto, L., Rachwal, L.: Super-renormalizable and finite gravitational theories. Nucl. Phys. B 889, 228–248 (2014)ADS MathSciNet CrossRef MATH
    4.Biswas, T., Gerwick, E., Koivisto, T., Mazumdar, A.: Towards singularity and ghost free theories of gravity. Phys. Rev. Lett. 108, 031101 (2012)ADS CrossRef
    5.Clifton, T., Ferreira, P.G., Padilla, A., Skordis, C.: Modified gravity and cosmology. Phys. Rep. 513, 1–189 (2012)ADS MathSciNet CrossRef
    6.De Felice, A., Tsujikawa, S.: \( f(R) \) theories. Living Rev. Rel. 13, 1002–4928 (2010)MATH
    7.Nojiri, S., Odintsov, S.D.: Introduction to modified gravity and gravitational alternative for dark energy. Int. J. Geom. Methods Mod. Phys. 4, 115–145 (2007)MathSciNet CrossRef MATH
    8.Nojiri, S., Odintsov, S.D.: Unified cosmic history in modified gravity: from f (r) theory to lorentz non-invariant models. Phys. Rep. 505, 59–144 (2011)ADS MathSciNet CrossRef
    9.Buchdahl, H.A.: Non-linear Lagrangians and cosmological theory. Mon. Not. R. Astron. Soc. 150, 1 (1970)ADS CrossRef
    10.Starobinsky, A.A.: A new type of isotropic cosmological models without singularity. Phys. Lett. B 91, 99–102 (1980)ADS CrossRef
    11.Carroll, S., Duvvuri, V., Turner, M., Trodden, M.: Is cosmic speed-up due to new gravitational physics? Phys. Rev. D 70, 043528 (2004)ADS CrossRef
    12.Nojiri, S., Odintsov, S.D.: Modified gravity with negative and positive powers of curvature: unification of inflation and cosmic acceleration. Phys. Rev. D 68, 123512 (2003)ADS MathSciNet CrossRef
    13.Sotiriou, T.P., Liberati, S.: Metric-affine \( f(R) \) theories of gravity. Ann. Phys. 322, 935–966 (2007)ADS MathSciNet CrossRef MATH
    14.Nojiri, S., Odintsov, S.D.: Modified \( f(R) \) gravity consistent with realistic cosmology: from a matter dominated epoch to a dark energy universe. Phys. Rev. D 74, 086005 (2006)ADS MathSciNet CrossRef
    15.Starobinsky, A.A.: Disappearing cosmological constant in \( f(R) \) gravity. JETP Lett. 86, 157–163 (2007)ADS CrossRef
    16.Mimoso, J.P., Crawford, P.: Shear-free anisotropic cosmological models. Class. Quantum Gravity 10, 315 (1993)ADS MathSciNet CrossRef
    17.Ellis, G.: Dynamics of pressure-free matter in general relativity. J. Math. Phys. 8, 1171 (1967)ADS CrossRef
    18.G ö del, K.: Rotating universes in general relativity theory . In: Graves, L.M. et al. Proceedings of the International Congress of Mathematicians, vol. 1, p. 175. Cambridge, Mass (1952)
    19.Goldberg, J., Sachs, R.: A theorem on petrov type (field equations for proving theorem identifying geometrical properties of null congruence with existence of algebraically special riemann tensor). 1966. 13–23 (1962)
    20.Robinson, I., Schild, A.: Generalization of a theorem by goldberg and sachs. J. Math. Phys. 4, 484 (1963)ADS MathSciNet CrossRef MATH
    21.Ellis, G., MacCallum, M.A.: A class of homogeneous cosmological models. Commun. Math. Phys. 12, 108–141 (1969)ADS MathSciNet CrossRef MATH
    22.MacCallum, M.: A class of homogeneous cosmological models iii: asymptotic behaviour. Commun. Math. Phys. 20, 57–84 (1971)ADS MathSciNet CrossRef
    23.Collins, C.: Shear-free fluids in general relativity. Can. J. Phys. 64, 191–199 (1986)ADS CrossRef
    24.Barrow, J.D., Matzner, R.A.: The homogeneity and isotropy of the universe. Mon. Not. R. Astron. Soc. 181, 719–727 (1977)ADS CrossRef
    25.MacCallum, M., Stewart, J., Schmidt, B.: Anisotropic stresses in homogeneous cosmologies. Commun. Math. Phys. 17, 343–347 (1970)ADS MathSciNet CrossRef
    26.Koivisto, T.S., Mota, D.F., Quartin, M., Zlosnik, T.G.: Possibility of anisotropic curvature in cosmology. Phys. Rev. D 83, 023509 (2011)ADS CrossRef
    27.Barrow, J.D., Ottewill, A.C.: The stability of general relativistic cosmological theory. J. Phys. A Math. Gen. 16, 2757 (1983)ADS MathSciNet CrossRef MATH
    28.Barrow, J.D., Clifton, T.: Exact cosmological solutions of scale-invariant gravity theories. Class. Quant. Gravity 23, L1 (2006)ADS MathSciNet CrossRef MATH
    29.Clifton, T., Barrow, J.D.: Further exact cosmological solutions to higher-order gravity theories. Class. Quant. Gravity 23, 2951 (2006)ADS MathSciNet CrossRef MATH
    30.Middleton, J.: On the existence of anisotropic cosmological models in higher order theories of gravity. Class. Quant. Gravity 27, 225013 (2010)ADS MathSciNet CrossRef MATH
    31.Abebe, A., Goswami, R., Dunsby, P.K.S.: Shear-free perturbations of \( f(R) \) gravity. Phys. Rev. D 84, 124027 (2011)ADS CrossRef
    32.Abebe, A.: Beyond concordance cosmology. Ph.D. thesis, UCT (University of Cape Town) (2013)
    33.Abebe, A.: Anti-newtonian cosmologies in \( f(R) \) gravity. Class. Quant. Gravity 31, 115011 (2014)ADS MathSciNet CrossRef MATH
    34.Abebe, A., Elmardi, M.: Irrotational-fluid cosmologies in fourth-order gravity. arXiv preprint arXiv:​1411.​6394 (2014)
    35.Ellis, G.F.R., Van Elst, H.: Cosmological models. In: Lachiéze-Rey, M. (ed.) Theoretical and Observational Cosmology, pp. 1–116. Springer, The Netherlands (1999)CrossRef
    36.Maartens, R., Triginer, J.: Density perturbations with relativistic thermodynamics. Phys. Rev. D 56, 4640 (1997)ADS CrossRef
    37.Betschart, G.: General relativistic electrodynamics with applicantions in cosmology and astrophysics. Ph.D. thesis, University of Cape Town (2005)
    38.Carloni, S., Dunsby, P., Troisi, A.: Evolution of density perturbations in \( f(R) \) gravity. Phys. Rev. D 77, 024024 (2008)ADS MathSciNet CrossRef
    39.Ellis, G., Bruni, M.: Covariant and gauge-invariant approach to cosmological density fluctuations. Phys. Rev. D 40, 1804 (1989)ADS MathSciNet CrossRef
    40.Ellis, G., Maartens, R., MacCallum, M.A.: Relativistic Cosmology. Cambridge University Press, Cambridge (2012)CrossRef MATH
    41.Maartens, R.: Covariant velocity and density perturbations in quasi-newtonian cosmologies. Phys. Rev. D 58, 124006 (1998)ADS MathSciNet CrossRef
    42.Israel, W.: Nonstationary irreversible thermodynamics: a causal relativistic theory. Ann. Phys. 100 (1976). http://​gen.​lib.​rus.​ec/​scimag/​index.​php?​s=​10.​1016/​0003-4916(76)90064-6
    43.Novella, M.: Cosmology and Gravitation Two, vol.  2, Atlantica S é guier Fronti è res, (1996)
    44.Maartens, R. Causal thermodynamics in relativity. arXiv preprint astro-ph/9609119 (1996)
    45.Rezzolla, L., Zanotti, O.: Relativistic Hydrodynamics. Oxford University Press, Oxford (2013)CrossRef MATH
    46.Coley, A.A., Van den Hoogen, R.: Qualitative analysis of viscous fluid cosmological models satisfying the israel-stewart theory of irreversible thermodynamics. Class. Quant. Gravity 12, 1977 (1995)ADS MathSciNet CrossRef MATH
    47.Visser, M.: Jerk, snap and the cosmological equation of state. Class. Quant. Gravity 21, 2603 (2004)ADS MathSciNet CrossRef MATH
    48.Nojiri, S., Odintsov, S, & Tsujikawa, S.: Properties of singularities in (phantom) dark energy universe. Phys. Rev. d71 063004 (2005). arXiv preprint hep-th/0501025
    49.Brandenberger, R. H.: The matter bounce alternative to inflationary cosmology. arXiv preprint arXiv:​1206.​4196 (2012)
    50.Cai, Y.-F.: Exploring bouncing cosmologies with cosmological surveys. Sci. China Phys. Mech. Astron. 57, 1414–1430 (2014)ADS CrossRef
    51.Bamba, K., Nojiri, S., Odintsov, S.D.: The future of the universe in modified gravitational theories: approaching a finite-time future singularity. J. Cosmol. Astropart. Phys. 2008, 045 (2008)CrossRef
    52.Barrow, J.D.: More general sudden singularities. Class. Quant. Gravity 21, 5619 (2004)ADS MathSciNet CrossRef MATH
  • 作者单位:Amare Abebe (1) (2)
    Davood Momeni (3)
    Ratbay Myrzakulov (3)

    1. Department of Physics, North-West University, Mahikeng, 2735, South Africa
    2. Entoto Observatory and Research Center, P.O. Box 33679, Addis Ababa, Ethiopia
    3. Department of General and Theoretical Physics, Eurasian International Center for Theoretical Physics, Eurasian National University, Astana, Kazakhstan, 010008
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Mathematical and Computational Physics
    Relativity and Cosmology
    Differential Geometry
    Quantum Physics
    Astronomy, Astrophysics and Cosmology
  • 出版者:Springer Netherlands
  • ISSN:1572-9532
文摘
We study a class of shear-free, homogeneous but anisotropic cosmological models with imperfect matter sources in the context of f(R) gravity. We show that the anisotropic stresses are related to the electric part of the Weyl tensor in such a way that they balance each other. We also show that within the class of orthogonal f(R) models, small perturbations of shear are damped, and that the electric part of the Weyl tensor and the anisotropic stress tensor decay with the expansion as well as the heat flux of the curvature fluid. Specializing in locally rotationally symmetric spacetimes in orthonormal frames, we examine the late-time behaviour of the de Sitter universe in f(R) gravity. For the Starobinsky model of f(R), we study the evolutionary behavior of the Universe by numerically integrating the Friedmann equation, where the initial conditions for the expansion, acceleration and jerk parameters are taken from observational data.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700