Fungal symbionts in three exotic ambrosia beetles, Xylosandrus amputatus, Xyleborinus andrewesi, and Dryoxylon onoharaense (Coleoptera: Curculionidae: Scolytinae: Xyleborini) in Florida
详细信息    查看全文
  • 作者:Craig Bateman ; Paul E. Kendra ; Robert Rabaglia ; Jiri Hulcr
  • 关键词:Xyleborini ; Ambrosia fungi ; Ambrosiella ; Lateral transfer ; non ; native symbiosis
  • 刊名:Symbiosis
  • 出版年:2015
  • 出版时间:July 2015
  • 年:2015
  • 卷:66
  • 期:3
  • 页码:141-148
  • 全文大小:682 KB
  • 参考文献:Ayres MP, Wilkens RT, Ruel JJ, Lombardero MJ, Vallery E (2000) Nitrogen budgets of phloem-feeding bark beetles with and without symbiotic fungi. Ecology 81(8):2198鈥?210CrossRef
    Batra LR (1963) Ecology of ambrosia fungi and their dissemination by beetles. Trans Kans Acad Sci 1903:213鈥?36CrossRef
    Batra LR (1966) Ambrosia fungi: extent of specificity to ambrosia beetles. Science 153(3732):193鈥?95CrossRef PubMed
    Batra LK (1967) Ambrosia fungi: a taxonomic revision, and nutritional studies of some species. Mycologia 59:976鈥?017. doi:10.鈥?307/鈥?757271 CrossRef
    Beer ZW d, Duong TA, Barnes I, Wingfield BD, Wingfield MJ (2014) Redefining ceratocystis and allied genera. Stud Mycol. doi:10.鈥?016/鈥媕.鈥媠imyco.鈥?014.鈥?0.鈥?01
    Biedermann PH, Klepzig KD, Taborsky M, Six DL (2013) Abundance and dynamics of filamentous fungi in the complex ambrosia gardens of the primitively eusocial beetle xyleborinus saxeseniiRatzeburg (coleoptera: curculionidae, scolytinae). FEMS Microbiol Ecol 83(3):711鈥?23CrossRef PubMed
    Brader L (1964) Etude de la relation entre le scolyte des rameaux du caf茅ier xyleborus compactus eichh. X Morstatti 1-109
    Bright DE, Rabaglia RJ (1999) Dryoxylon, a new genus for xyleborus onoharaensis Murayama, recently established in the southeastern United States (coleoptera: scolytidae). Coleopt Bull 333-337
    Carrillo D, Duncan RE, Ploetz JN, Campbell AF, Ploetz RC, Pe帽a JE (2014) Lateral transfer of a phytopathogenic symbiont among native and exotic ambrosia beetles. Plant Pathol 63(1):54鈥?2. doi:10.鈥?111/鈥媝pa.鈥?2073 CrossRef
    Cognato AI, Hulcr J, Dole SA, Jordal BH (2011a) Phylogeny of haplo鈥揹iploid, fungus-growing ambrosia beetles (curculionidae: scolytinae: xyleborini) inferred from molecular and morphological data. Zool Scr 40(2):174鈥?86
    Cognato AI, Olson RO, Rabaglia RJ (2011b) An Asian ambrosia beetle, xylosandrus amputatus (blandford) (curculionidae: scolytinae: xyleborini), discovered in Florida, U.S.A. Coleopt Bull 65(1):43鈥?5CrossRef
    Coppedge BR, Stephen FM, Felton GW (1995) Variation in female southern pine beetle size and lipid content in relation to fungal associates. The Canadian Entomologist 127(02):145鈥?54CrossRef
    Darriba D, Taboada GL, Doallo R, Posada D (2012) JModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9(8):772PubMedCentral CrossRef PubMed
    Dole SA, Cognato AI (2010) Phylogenetic revision of xylosandrus reitter (coleoptera: curculionidae: scolytinae: xyleborina). Proceedings of the California Academy of Sciences
    Dreaden TJ, Davis JM, De Beer ZW, Ploetz RC, Soltis PS, Wingfield MJ, Smith JA (2014) Phylogeny of ambrosia beetle symbionts in the genus raffaelea. Fungal Biology 118(12):970鈥?78CrossRef PubMed
    Francke-Grosmann H (1967) Ectosymbiosis in wood-inhabiting insects. Symbiosis 2:141鈥?05CrossRef
    Fox JW, Wood DL, Akers RP, Parmeter JR (1992) Survival and development of Ips paraconfusus Lanier (coleoptera: scolytidae) reared axenically and with tree-pathogenic fungi vectored by cohabiting dendroctonus species. The Canadian Entomologist 124(06):1157鈥?167CrossRef
    Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 61:1323鈥?330
    Guindon S, Gascuel O (2003) A simple, fast and accurate method to estimate large phylogenies by Maximum-likelihood". Syst Biol 52:696鈥?04CrossRef PubMed
    Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59(3):307鈥?21
    Haack RA, Rabaglia RJ (2013) Exotic bark and ambrosia beetles in the USA: potential and current invaders. Potential Invasive Pests of Agricultural Crops. CAB International, Boston, MA, pp. 48鈥?4
    Harrington TC, Aghayeva DN, Fraedrich SW (2010) New combinations in raffaelea, ambrosiella, and hyalorhinocladiella, and four new species from the redbay ambrosia beetle, xyleborus glabratus. Mycotaxon 111(1):337鈥?61CrossRef
    Harrington TC, Yun HY, Lu SS, Goto H, Aghayeva DN, Fraedrich SW (2011) Isolations from the redbay ambrosia beetle, xyleborus glabratus, confirm that the laurel wilt pathogen, raffaelea lauricola, originated in Asia. Mycologia 103(5):1028鈥?036CrossRef PubMed
    Harrington, T. C., McNew, D., Mayers, C., Fraedrich, S. W., & Reed, S. E. (2014). Ambrosiella roeperi sp. nov. is the mycangial symbiont of the granulate ambrosia beetle, Xylosandrus crassiusculus. Mycologia, 106(4), 835845. doi:10.鈥?852/鈥?3-354
    Hofstetter RW, Cronin JT, Klepzig KD, Moser JC, Ayres MP (2006) Antagonisms, mutualisms and commensalisms affect outbreak dynamics of the southern pine beetle. Oecologia 147(4):679鈥?91CrossRef PubMed
    Hulcr J, Cognato AI (2010) Repeated evolution of crop theft in fungus-farming ambrosia beetles. Evolution 64(11):3205鈥?212CrossRef PubMed
    Hulcr J, Dunn RR (2011) The sudden emergence of pathogenicity in insect-fungus symbioses threatens naive forest ecosystems. Proceedings Biological sciences/The Royal Society 278(1720):2866鈥?873. doi:10.鈥?098/鈥媟spb.鈥?011.鈥?130 PubMedCentral CrossRef PubMed
    Jari Oksanen, F. Guillaume Blanchet, Roeland Kindt, Pierre Legendre, Peter R. Minchin, R. B. O'hara, Gavin L. Simpson, Peter Solymos, M. Henry H. Stevens And Helene Wagner (2015). Vegan: community ecology package. R package version 2.2鈥?. http://鈥媍ran.鈥?span class="ExternalRef">r-project.鈥媜rg/鈥媝ackage=鈥媣egan
    Kasson MT, O'Donnell K, Rooney AP, Sink S, Ploetz R, Ploetz JN, Konkol JN, Carillo D, Freeman S, Mendel Z, Smith JE, Black A, Hulcr J, Bateman C, Black AW, Campbell PR, Geering AD, Dann EK, Eskalen A, Mohotti K, Short DP, Aoki T, Fenstermacher KA, Davis DD, Geiser DM (2013) An inordinate fondness for fusarium: phylogenetic diversity of fusaria cultivated by ambrosia beetles in the genus euwallacea on avocado and other plant hosts. Fungal Genet Biol: FG & B 56:147鈥?57. doi:10.鈥?016/鈥媕.鈥媐gb.鈥?013.鈥?4.鈥?04 CrossRef
    Kendra PE, Montgomery WS, Sanchez JS, Deyrup MA, Niogret J, Epsky ND (2012) Method for collection of live redbay ambrosia beetles, xyleborus glabratus (coleoptera: curculionidae: scolytinae). Florida Entomol 95(2):513鈥?16CrossRef
    Kendra PE, Niogret J, Montgomery WS, Deyrup MA, Epsky ND (2015) Cubeb oil lures: terpenoid emissions, trapping efficacy, and longevity for attraction of redbay ambrosia beetle (coleoptera: curculionidae: scolytinae). J Econ Entomol 108(1):350鈥?61CrossRef PubMed
    Kim JJ, Lim Y, Wingfield M, Breuil C, Kim GH (2004) Leptographium bistatum sp. nov., a new species with a Sporothrix synanamorph from Pinus radiata in Korea. Mycol Res 108:699鈥?06
    Kostovcik M, Bateman CC, Kolarik M, Stelinski LL, Jordal BH, Hulcr J (2014) The ambrosia symbiosis is specific in some species and promiscuous in others: evidence from community pyrosequencing. ISME J
    Kubono T, Ito SI (2002) Raffaelea quercivora sp. nov. associated with mass mortality of Japanese oak, and the ambrosia beetle (platypus quercivorus). Mycoscience 43(3):0255鈥?260CrossRef
    Li, Y., Simmons, D.R., Bateman, C., Short, D.P., Kasson, M.T., Rabaglia, R., Hulcr, J. (2015). New fungus-insect symbiosis: culturing, molecular, and histological methods determine saprophytic Polyporales mutualists of Ambrosiodmus. PLoS One. Sep 14;10(9):e0137689.
    Massoumi Alamouti S, Tsui CK, Breuil C (2009) Multigene phylogeny of filamentous ambrosia fungi associated with ambrosia and bark beetles. Mycol Res 113(Pt 8):822鈥?35. doi:10.鈥?016/鈥媕.鈥媘ycres.鈥?009.鈥?3.鈥?03 CrossRef PubMed
    Mayers CG, Mcnew DL, Harrington TC, Roeper RA, Fraedrich SW, Biedermann PH, Castrillo LA, Reed SE (2015) Three genera in the ceratocystidaceae are the respective symbionts of three independent lineages of ambrosia beetles with large, complex mycangia. Fungal Biology
    Mueller UG, Gerardo N (2002) Fungus-farming insects: multiple origins and diverse evolutionary histories. P Natl Acad Sci USA 99(24):15247鈥?5249. doi:10.鈥?073/鈥媝nas.鈥?42594799 CrossRef
    Mueller, U. G., Gerardo, N. M., Aanen, D. K., Six, D. L., & Schultz, T. R. (2005). The evolution of agriculture in insects. Annu Rev Ecol Evol S 563-595.
    Nobre T, Kon茅 NA, Konat茅 S, Linsenmair KE, Aanen DK (2011) Dating the fungus-growing termites' mutualism shows a mixture between ancient codiversification and recent symbiont dispersal across divergent hosts. Mol Ecol 20(12):2619鈥?627. doi:10.鈥?111/鈥媕.鈥?365-294x.鈥?011.鈥?5090.鈥媥 CrossRef PubMed
    Okins KE, Thomas MC (2010) New north American record for xyleborinus andrewesi (coleoptera: curculionidae: scolytinae). Florida Entomol 93(1):133鈥?34CrossRef
    Schiefer TL (2015) A new earliest date of first detection for the exotic ambrosia beetle dryoxylon onoharaense (Murayama)(coleoptera: curculionidae: scolytinae) in North America. Coleopt Bull 69(1):178鈥?79CrossRef
    Six DL, Paine TD (1998) Effects of mycangial fungi and host tree species on progeny survival and emergence of dendroctonus ponderosae (coleoptera: scolytidae). Environ Entomol 27(6):1393鈥?401CrossRef
    Six DL, Stone WD, de Beer ZW, Woolfolk SW (2009) Ambrosiella beaveri, sp. nov., associated with an exotic ambrosia beetle, xylosandrus mutilatus (coleoptera: curculionidae, scolytinae), in Mississippi, USA. A Van Leeuw J Microb 96(1):17鈥?9CrossRef
    White TJ, Bruns T, Lee SJWT, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: A Guide to Methods and Applications 18:315鈥?22
    Wood SL (1982) The bark and ambrosia beetles of north and central America (coleoptera: scolytidae), a taxonomic monograph. Great Basin Nat Mem 6:1鈥?356
  • 作者单位:Craig Bateman (1)
    Paul E. Kendra (2)
    Robert Rabaglia (3)
    Jiri Hulcr (1) (4)

    1. Department of Entomology and Nematology, University of Florida, Gainesville, FL, 32611, USA
    2. USDA-ARS, Subtropical Horticulture Research Station, Miami, FL, 33158, USA
    3. Forest Health Protection, USDA Forest Service, Washington, DC, 20250, USA
    4. School of Forest Resources and Conservation, University of Florida, Gainesville, FL, 32611, USA
  • 刊物主题:Evolutionary Biology; Developmental Biology; Microbiology; Plant Sciences; Ecology;
  • 出版者:Springer Netherlands
  • ISSN:1878-7665
文摘
In nearly every forest habitat, ambrosia beetles (Coleoptera: Curculionidae: Scolytinae, Platypodinae) plant and maintain symbiotic fungus gardens inside dead or dying trees. Some non-native ambrosia beetles aggressively attack live trees and damage tree crops, lumber, and native woody plant taxa by introducing ambrosia fungi, some of which are plant pathogens. Most established exotic species, however, do not cause any economic damage, and consequently are little studied. To determine the specificity and diversity of ambrosia symbionts in under-studied non-native beetles in Florida, fungi were isolated from three species: Xylosandrus amputatus, Xyleborinus andrewesi, and Dryoxylon onoharaense. Two of the beetles sampled each yielded a fungal species isolated with 100 % frequency: X. amputatus: Ambrosiella beaveri or A. nakashimae, and X. andrewesi: Raffaelea sp. nov. nr. canadensis. Both of these symbionts have been isolated previously from closely related ambrosia beetles, supporting the hypothesis that some beetles can carry monocultures of fungi, but the fungi may not be specific to single beetle species. No consistent fungi were isolated from Dryoxylon onoharaense, raising questions about whether or not it truly carries its own symbionts. These results are now being used to test hypotheses and models explaining the evolution of pathogenicity within ambrosia fungi and invasion ability within exotic beetle-fungus complexes. Keywords Xyleborini Ambrosia fungi Ambrosiella Lateral transfer non-native symbiosis

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700