Smooth particle hydrodynamics study of surface defect machining for diamond turning of silicon
详细信息    查看全文
  • 作者:Amir Mir ; Xichun Luo ; Amir Siddiq
  • 关键词:Surface defect machining ; Diamond turning ; Silicon ; SPH
  • 刊名:The International Journal of Advanced Manufacturing Technology
  • 出版年:2017
  • 出版时间:February 2017
  • 年:2017
  • 卷:88
  • 期:9-12
  • 页码:2461-2476
  • 全文大小:5799KB
  • 刊物类别:Engineering
  • 刊物主题:Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design;
  • 出版者:Springer London
  • ISSN:1433-3015
  • 卷排序:88
文摘
This paper presents the feasibility study of potential application of recently developed surface defect machining (SDM) method in the fabrication of silicon and similar hard and brittle materials using smooth particle hydrodynamics (SPH) simulation approach. Simulation study of inverse parametric analysis was carried out to determine the Drucker-Prager (DP) constitutive model parameters of silicon by analysing the deformed material response behaviour using various DP model parameters. Indentation test simulations were carried out to perform inverse parametric study. SPH approach was exploited to machine silicon using conventional and surface defect machining method. To this end, we delve into opportunities of exploiting SDM through optimised machining quality, reduced machining time and lowering cost. The results of the conventional simulation were compared with the results of experimental diamond turning of silicon. In the SPH simulations, various types of surface defects were introduced on the workpiece prior to machining. Surface defects were equally distributed on the top face of the workpiece. The simulation study encompasses the investigation of chip formation, resultant machining forces, stresses and hydrostatic pressure with and without SDM. The study reveals the SDM process is an effective technique to manufacture hard and brittle materials as well as facilitate increased tool life. The study also divulges the importance of SPH evading the mesh distortion problem and offer natural chip formation during machining of hard and brittle materials.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700