Grain Boundary Character Distributions in Nanocrystalline Metals Produced by Different Processing Routes
详细信息    查看全文
  • 作者:David B. Bober ; Amirhossein Khalajhedayati…
  • 刊名:Metallurgical and Materials Transactions A
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:47
  • 期:3
  • 页码:1389-1403
  • 全文大小:13,905 KB
  • 参考文献:1.1. M. A. Meyers, A. Mishra and D. J. Benson, Prog Mater Sci 2006, vol. 51, pp. 427-556.CrossRef
    2.2. L. Mishnaevsky, et al., Mater. Sci. Eng. R. 2014, vol. 81, pp. 1-19.CrossRef
    3.R. A. Prado, J. Benfer, D. Facchini, N. Mahalanobis, and F. Gonzalez, Prod. Finish, 2012.
    4.4. Z. C. Cordero, et al., Metall. Mater. Trans. A. 2014, vol. 45A, pp. 3609-3618.CrossRef
    5.5. P. W. Bridgman, J Appl Phys 1943, vol. 14, pp. 273-283.CrossRef
    6.6. R. Z. Valiev, R. K. Islamgaliev and I. V. Alexandrov, Prog Mater Sci 2000, vol. 45, pp. 103-189.CrossRef
    7.7. A. P. Zhilyaev and T. G. Langdon, Prog Mater Sci 2008, vol. 53, pp. 893-979.CrossRef
    8.8. Y. B. Zhang, O. V. Mishin, N. Kamikawa, A. Godfrey, W. Liu and Q. Liu, Mat Sci Eng A 2013, vol. 576, pp. 160-166.CrossRef
    9.9. S. C. Tjong and H. Chen, Mater. Sci. Eng. R. 2004, vol. 45, pp. 1-88.CrossRef
    10.10. U. Erb, A. M. El-Sherik, G. Palumbo and K. T. Aust, Nanostruct Mater 1993, vol. 2, pp. 383-390.CrossRef
    11.11. A. Robertson, U. Erb and G. Palumbo, Nanostruct Mater 1999, vol. 12, pp. 1035-1040.CrossRef
    12.12. H. Gleiter, Prog Mater Sci 1989, vol. 33, pp. 223-315.CrossRef
    13.13. R. J. Asaro, P. Krysl and B. Kad, Phil Mag Lett 2003, vol. 83, pp. 733-743.CrossRef
    14.14. V. Yamakov, D. Wolf, S. R. Phillpot, A. K. Mukherjee and H. Gleiter, Phil Mag Lett 2003, vol. 83, pp. 385-393.CrossRef
    15.15. J. Schiotz and K. W. Jacobsen, Science 2003, vol. 301, pp. 1357-1359.CrossRef
    16.16. T. J. Rupert and C. A. Schuh, Acta Materialia 2010, vol. 58, pp. 4137-4148.CrossRef
    17.17. H. A. Padilla and B. L. Boyce, Exp Mech 2010, vol. 50, pp. 5-23.CrossRef
    18.18. G. Herzer, IEEE Trans. Magn. 1990, vol. 26, pp. 1397-1402.CrossRef
    19.19. G. Palumbo, E. M. Lehockey and P. Lin, JOM 1998, vol. 50, pp. 40-43.CrossRef
    20.20. A. J. Schwartz, W. E. King and M. Kumar, Scripta Materialia 2006, vol. 54, pp. 963-968.CrossRef
    21.21. R. Z. Valiev, A. V. Sergueeva and A. K. Mukherjee, Scripta Materialia 2003, vol. 49, pp. 669-674.CrossRef
    22.22. M. Dao, L. Lu, Y. F. Shen and S. Suresh, Acta Materialia 2006, vol. 54, pp. 5421-5432.CrossRef
    23.23. L. Lu, Y. F. Shen, X. H. Chen, L. H. Qian and K. Lu, Science 2004, vol. 304, pp. 422-426.CrossRef
    24.24. K. Barmak, et al., J. Vac. Sci. Technol. A 2014, vol. 32, p. 7.CrossRef
    25.25. H. J. Fecht, E. Hellstern, Z. Fu and W. L. Johnson, Metall Trans A 1990, vol. 21, pp. 2333-2337.CrossRef
    26.26. B. Bay, N. Hansen, D. A. Hughes and D. Kuhlmann-Wilsdorf, Acta Metall. Mater. 1992, vol. 40, pp. 205-219.CrossRef
    27.27. N. Hansen and D. J. Jensen, Philos T R Soc A 1999, vol. 357, pp. 1447-1469.CrossRef
    28.28. D. A. Hughes and N. Hansen, Acta Materialia 1997, vol. 45, pp. 3871-3886.CrossRef
    29.29. S. Qu, et al., Acta Materialia 2009, vol. 57, pp. 1586-1601.CrossRef
    30.30. H. J. Fecht, Nanostruct Mater 1995, vol. 6, pp. 33-42.CrossRef
    31.31. J. Eckert, J. C. Holzer, C. E. Krill and W. L. Johnson, J Mater Res 1992, vol. 7, pp. 1751-1761.CrossRef
    32.32. D. B. Witkin and E. J. Lavernia, Prog Mater Sci 2006, vol. 51, pp. 1-60.CrossRef
    33.33. E. Hellstern, H. J. Fecht, C. Garland and W. L. Johnson, Mat. Res. Soc. Symp. Proc. 1989, vol. 132, pp. 137-142.CrossRef
    34.S. Ruan and C. A. Schuh, J Appl Phys 2010, vol. 107, 073512.CrossRef
    35.35. J. K. Mackenzie, Biometrika 1958, vol. 45, pp. 229-240.CrossRef
    36.36. J. K. Mason and C. A. Schuh, Acta Materialia 2009, vol. 57, pp. 4186-4197.CrossRef
    37.37. A. J. Detor and C. A. Schuh, Acta Materialia 2007, vol. 55, pp. 371-379.CrossRef
    38.38. I. Roy, H. W. Yang, L. Dinh, I. Lund, J. C. Earthman and F. A. Mohamed, Scripta Materialia 2008, vol. 59, pp. 305-308.CrossRef
    39.39. O. V. Mishin, D. J. Jensen and N. Hansen, Mat Sci Eng A 2003, vol. 342, pp. 320-28.CrossRef
    40.40. D. Viladot, et al., J Microsc 2013, vol. 252, pp. 23-34.CrossRef
    41.41. R. R. Keller and R. H. Geiss, J Microsc 2012, vol. 245, pp. 245-251.CrossRef
    42.42. P. W. Trimby, Ultramicroscopy 2012, vol. 120, pp. 16-24.CrossRef
    43.43. W. D. Nix and H. J. Gao, J Mech Phys Solids 1998, vol. 46, pp. 411-425.CrossRef
    44.44. D. G. Brandon, Acta Metallurgica 1966, vol. 14, pp. 1479-&.CrossRef
    45.H. Grimmer, W. Bollmann, D. H. Warrington (1974) Acta Crystallogr A vol. A 30, pp. 197-207.CrossRef
    46.46. C. A. Schuh, M. Kumar and W. E. King, J Mater Sci 2005, vol. 40, pp. 847-852.CrossRef
    47.47. Y. Xun and F. A. Mohamed, Mater. Sci Eng. A. 2011, vol. 528, pp. 5446-5452.CrossRef
    48.48. A. P. Zhilyaev, B. K. Kim, G. V. Nurislamova, M. D. Baro, J. A. Szpunar and T. G. Langdon, Scripta Materialia 2002, vol. 46, pp. 575-580.CrossRef
    49.49. K. S. Raju, M. G. Krishna, K. A. Padmanabhan, K. Muraleedharan, N. P. Gurao and G. Wilde, Mat Sci Eng A 2008, vol. 491, pp. 1-7.CrossRef
    50.50. D. A. Hughes and N. Hansen, Phys. Rev. Lett. 2001, vol. 87, p. 4.
    51.M. Grewer, C. Braun, J. Lohmiller, P. A. Gruber, V. Honkimäki, and R. Birringer, ArXiv 2014.
    52.52. Y. W. Xun, E. J. Lavernia and F. A. Mohamed, Metall. Mater. Trans. A. 2004, vol. 35A, pp. 573-581.CrossRef
    53.53. C. Suryanarayana, Prog Mater Sci 2001, vol. 46, pp. 1-184.CrossRef
    54.54. T. J. Rupert, J. C. Trenkle and C. A. Schuh, Acta Materialia 2011, vol. 59, pp. 1619-1631.CrossRef
    55.55. E. O. Hall, P Phys Soc B 1951, vol. 64, p. 747.CrossRef
    56.56. N. J. Petch, J Iron Steel I 1953, vol. 174, pp. 25-28.
    57.57. J. A. Knapp and D. M. Follstaedt, J Mater Res 2004, vol. 19, pp. 218-227.CrossRef
    58.58. G. D. Hughes, S. D. Smith, C. S. Pande, H. R. Johnson and R. W. Armstrong, Scripta Metallurgica 1986, vol. 20, pp. 93-97.CrossRef
    59.59. A. M. El-Sherik, U. Erb, G. Palumbo and K. T. Aust, Scripta Metallurgica et Materialia 1992, vol. 27, pp. 1185-1188.CrossRef
    60.60. D. J. Abson and J. J. Jonas, Metal Science 1970, vol. 4, pp. 24-28.CrossRef
    61.61. S. Kobayashi, T. Yoshimura, S. Tsurekawa, T. Watanabe and J. Z. Cui, Mater. Trans. 2003, vol. 44, pp. 1469-1479.CrossRef
    62.62. A. Hasnaoui, H. Van Swygenhoven and P. M. Derlet, Science 2003, vol. 300, pp. 1550-1552.CrossRef
    63.63. X. W. Zhou and H. N. G. Wadley, Acta Materialia 1999, vol. 47, pp. 1063-1078.CrossRef
    64.64. X. Zhang, O. Anderoglu, R. G. Hoagland and A. Misra, JOM 2008, vol. 60, pp. 75-78.CrossRef
    65.65. D. J. Siegel, Appl Phys Lett 2005, vol. 87, p. 121901.CrossRef
    66.T. Lagrange, B. W. Reed, M. Wall, J. Mason, T. Barbee and M. Kumar, Appl Phys Lett 2013, 102: 011905CrossRef
    67.67. Z. Horita, D. J. Smith, M. Nemoto, R. Z. Valiev and T. G. Langdon, J Mater Res 1998, vol. 13, pp. 446-450.CrossRef
    68.68. K. Pantleon and M. A. J. Somers, Mater. Sci Eng. A. 2010, vol. 528, pp. 65-71.CrossRef
    69.69. S. Mahajan, C. S. Pande, M. A. Imam and B. B. Rath, Acta Materialia 1997, vol. 45, pp. 2633-2638.CrossRef
    70.70. H. Gleiter, Acta Metallurgica 1969, vol. 17, pp. 1421-1428.CrossRef
    71.X. Liu, N.T. Nuhfer, A.P. Warren, K.R. Coffey, G.S. Rohrer, and K. Barmak, J Mater Res 2015, pp. 1–10.
    72.72. C. A. Schuh, R. W. Minich and M. Kumar, Philos Mag 2003, vol. 83, pp. 711-726.CrossRef
    73.73. S. H. Kim, K. T. Aust, F. Gonzalez and G. Palumbo, Plat. Surf. Finish. 2004, vol. 91, pp. 68-70.
    74.74. G. Palumbo and K. T. Aust, Acta Metall. Mater. 1990, vol. 38, pp. 2343-2352.CrossRef
    75.75. Y. Zhao, I. C. Cheng, M. E. Kassner and A. M. Hodge, Acta Materialia 2014, vol. 67, pp. 181-188.CrossRef
    76.76. H. Zhao, L. Liu, J. Zhu, Y. Tang and W. Hu, Mater. Lett. 2007, vol. 61, pp. 1605-1608.CrossRef
    77.77. J. Vijayakumar and S. Mohan, Surf Eng 2011, vol. 27, pp. 32-36.CrossRef
    78.78. L. Y. Qin, J. S. Lian and Q. Jiang, Trans. Nonferrous Met. Soc. China 2010, vol. 20, pp. 82-89.CrossRef
    79.79. R. Mishra and R. Balasubramaniam, Corros Sci 2004, vol. 46, pp. 3019-3029.CrossRef
    80.80. C. Wen, G. Wen, Y. Qian and Q. Xinxin, Appl Surf Sci 2013, vol. 276, pp. 604-8.CrossRef
    81.81. M. Janecek, B. Hadzima, R. J. Hellmig and Y. Estrin, Kov. Mater.-Met. Mater. 2005, vol. 43, pp. 258-271.
    82.B. Hadzima, M. Janecek, R.J. Hellmig, Y. Kutnyakova and Y. Estrin (2006) In: Z. Horita (ed) Nanomaterials by Severe Plastic Deformation. Trans Tech Publications Ltd: Zurich-Uetikon, pp 883-888.
    83.M. Saremi and M. Abouie (2011) In: M. S. J. Hashmi, S. Mridha and S. Naher (ed) Advances in Materials and Processing Technologies Ii, Pts 1 and 2. Trans Tech Publications Ltd: Stafa-Zurich, pp 1519-1525.
    84.84. M. Saremi and M. Yeganeh, Micro Nano Lett. 2010, vol. 5, pp. 70-75.CrossRef
    85.85. X. X. Xu, et al., Mater. Lett. 2010, vol. 64, pp. 524-527.CrossRef
    86.86. G. Palumbo and U. Erb, MRS Bull. 1999, vol. 24, pp. 27-32.
    87.87. A. Vinogradov, T. Mimaki, S. Hashimoto and R. Valiev, Scripta Materialia 1999, vol. 41, pp. 319-326.CrossRef
    88.88. C. A. Schuh, K. Anderson and C. Orme, Surf Sci 2003, vol. 544, pp. 183-192.CrossRef
    89.89. C. Kollia and N. Spyrellis, Surf. Coat. Technol. 1993, vol. 57, pp. 71-75.CrossRef
    90.90. A. Q. Lü, Y. Zhang, Y. Li, G. Liu, Q. H. Zang and C. M. Liu, Acta Metallurgica Sinica (English Letters) 2006, vol. 19, pp. 183-189.CrossRef
  • 作者单位:David B. Bober (1) (2)
    Amirhossein Khalajhedayati (3)
    Mukul Kumar (2)
    Timothy J. Rupert (1) (3)

    1. Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA, 92697, USA
    2. Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
    3. Department of Chemical Engineering and Materials Science, University of California, Irvine, CA, 92697, USA
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Materials Science
    Metallic Materials
    Structural Materials
    Physical Chemistry
    Ceramics,Glass,Composites,Natural Materials
  • 出版者:Springer Boston
  • ISSN:1543-1940
文摘
Nanocrystalline materials are defined by their fine grain size, but details of the grain boundary character distribution should also be important. Grain boundary character distributions are reported for ball-milled, sputter-deposited, and electrodeposited Ni and Ni-based alloys, all with average grain sizes of ~20 nm, to study the influence of processing route. The two deposited materials had nearly identical grain boundary character distributions, both marked by a Σ3 length percentage of 23 to 25 pct. In contrast, the ball-milled material had only 3 pct Σ3-type grain boundaries and a large fraction of low-angle boundaries (16 pct), with the remainder being predominantly random high angle (73 pct). These grain boundary character measurements are connected to the physical events that control their respective processing routes. Consequences for material properties are also discussed with a focus on nanocrystalline corrosion. As a whole, the results presented here show that grain boundary character distribution, which has often been overlooked in nanocrystalline metals, can vary significantly and influence material properties in profound ways. The submitted manuscript has been authored by a contractor of the U.S. Government under contract number DE-AC52-07NA27344. Accordingly the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes.Manuscript submitted May 26, 2015.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700