The effect of temperature and moisture on the source of N2O and contributions from ammonia oxidizers in an agricultural soil
详细信息    查看全文
文摘
In recent years, identification of the microbial sources responsible for soil N2O production has substantially advanced with the development of isotope enrichment techniques, selective inhibitors, mathematical models and the discoveries of specific N-cycling functional genes. However, little information is available to effectively quantify the N2O produced from different microbial pathways (e.g. nitrification and denitrification). Here, a 15N-tracing incubation experiment was conducted under controlled laboratory conditions (50, 70 and 85% water-filled pore space (WFPS) at 25 and 35 °C). Nitrification was the main contributor to N2O production. At 50, 70 and 85% WFPS, nitrification contributed 87, 80 and 53% of total N2O production, respectively, at 25 °C, and 86, 74 and 33% at 35 °C. The proportion of nitrified N as N2O (PN2O) increased with temperature and moisture, except for 85% WFPS, when PN2O was lower at 35 °C than at 25 °C. Ammonia-oxidizing archaea (AOA) were the dominant ammonia oxidizers, but both AOA and ammonia-oxidizing bacteria (AOB) were related to N2O emitted from nitrification. AOA and AOB abundance was significantly influenced by soil moisture, more so than temperature, and decreased with increasing moisture content. These findings can be used to develop better models for simulating N2O from nitrification to inform soil management practises for improving N use efficiency.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700