Comparative Study of Chromium Biosorption by Mesorhizobium amorphae Strain CCNWGS0123 in Single and Binary Mixtures
详细信息    查看全文
  • 作者:Pin Xie (1)
    Xiuli Hao (1)
    Osama Abdalla Mohamad (1)
    Jianqiang Liang (1)
    Gehong Wei (1)
  • 关键词:Biosorption ; Cr(VI) ; Cr(III) ; M. amorphae CCNWGS0123 ; FTIR ; SEM ; EDX
  • 刊名:Applied Biochemistry and Biotechnology
  • 出版年:2013
  • 出版时间:January 2013
  • 年:2013
  • 卷:169
  • 期:2
  • 页码:570-587
  • 全文大小:375KB
  • 参考文献:1. Park, D. H., Yun, Y. S., et al. (2006). Biosorption process for treatment of electroplating wastewater containing Cr(VI): laboratory-scale feasibility test. / Industrial and Engineering Chemistry Research, 45(14), 5059-065. CrossRef
    2. Gooloka, M. C. (1995). Toxic and mutagenic effects of chromium (VI): a review. / Polyhedron, 15, 3667-689.
    3. Kaufaman, D. B. (1970). Acute potassium dichromate poisoning in man. / American journal of disease of children, 119, 374-81.
    4. Kimbrough, D. E., Cohen, Y., et al. (1999). A critical assessment of chromium in the environment. / Environmental Science & Technology, 29, 1-6. CrossRef
    5. Baral, A., & Engelken, R. D. (2002). Chromium-based regulations and greening in metal finishing industries in the USA. / Environmental Science Policy, 5(2), 121-33. CrossRef
    6. Wang, J. L., & Chen, C. (2009). Biosorbents for heavy metals removal and their future. / Biotechnology Advances, 27(2), 195-26. CrossRef
    7. Lesmana, S. O., Febriana, N., et al. (2009). Studies on potential applications of biomass for the separation of heavy metals from water and wastewater. / Biochemical Engineering Journal, 44(1), 19-1. CrossRef
    8. Davis, T. A., & Volesky, B. (2003). A review of the biochemistry of heavy metal biosorption by brown algae. / Water Research, 37, 4311-330. CrossRef
    9. Srinath, T., Verma, T., et al. (2002). Chromium (VI) biosorption and bioaccumulation by chromate resistant bacteria. / Chemosphere, 48, 427-35. CrossRef
    10. Dowine, A. (1997). Fixing a symbiotic circle. / Nature, 387, 352-53. CrossRef
    11. Carrasco, J. A., Armario, P., et al. (2005). Isolation and characteristic of symbiotically effective rhizobium resistance to arsenic and heavy metals after the toxic spill at the Aznalcollar pyrite mine. / Soil Biology and Biochemistry, 37, 1131-140. CrossRef
    12. Chaudri, A. M., McGrath, S. P., et al. (2006). Screening of isolates and strains of / Rhizobium leguminosarum biovar trifolii for heavy metal resistance using buffered media. / Environmental Toxicology and Chemistry, 12(9), 1643-651.
    13. Wu, C. H., Wood, T. K., et al. (2006). Engineering plant-microbe symbiosis for rhizoremediation of heavy metals. / Applied and Environmental Microbiology, 72(2), 1129-134. CrossRef
    14. Sriprang, R., Hayashi, M., et al. (2002). A novel bioremediation system for heavy metal using the symbiosis between leguminous plant and genetically engineered rhizobia. / Journal of Biotechnology, 99, 279-93. CrossRef
    15. Ike, A., Sriprang, R., et al. (2007). Bioremediation of cadium contaminated soil using symbiosis between leguminous plant and recombinant rhizobia with the MTL4 and the PCS genes. / Chemosphere, 66, 1670-676. CrossRef
    16. Hao, X. L., & Lin, Y. B. (2012). Draft genome sequence of plant growth-promoting rhizobium / Mesorhizobium amorphae, isolated from zinc-lead mine tailings. / Journal of Bacteriology, 194(3), 736-37. CrossRef
    17. Mohamad, O. A., Hao, X. L., et al. (2012) Biosorption of copper (II) from aqueous solution using non-living / Mesorhizobium amorphae strain CCNWGS0123. / Microbes Environment, 27, 234-41.
    18. Gadd, G. M. (1990). Heavy metal accumulation by bacteria and other microorganisms. / Cellular and Molecular Life Sciences, 46(8), 834-40. CrossRef
    19. Kobya, M. (2004). Adsorption, kinetic and equilibrium studies of Cr(VI) by hazelnut shell activated carbon. / Adsorption Science and Technology, 22, 51-4. CrossRef
    20. Bishnoi, N. R., Kumar, R., et al. (2007). Biosorption of Cr(III) from aqueous solution using algal biomass / Spirogyra spp. / Journal of Hazardous Materials, 145(1-), 142-47. CrossRef
    21. Tobin, J. M., Cooper, D. G., et al. (1984). Uptake of metal ions by / Rhizopus arrihizus biomass. / Applied and Environmental Microbiology, 4, 821-24.
    22. St?hr, C., Horst, J., et al. (2001). Application of the surface complex formation model to ion exchange equilibrium l part. V. Adsorption of heavy metal salts onto weakly basic anion exchangers. / Reactive and Functional Polymers, 49, 117-32. CrossRef
    23. Murphy, V., Hughes, H., et al. (2007). Copper binding by dried biomass of red, green and brown macroalgae. / Water Research, 41, 731-40. CrossRef
    24. Ma, W., Tobin, J. M., et al. (2004). Determination and modeling of effects of p H on peat biosorption of chromium, copper and cadmium. / Biochemical Engineering Journal, 18(1), 33-0. CrossRef
    25. Cossich, E. S., Granhen, C. R., et al. (2002). Biosorption of chromium (III) by / Sargassum sp. biomass. / Electronic Journal of Biotechnology, 5(2), 6-.
    26. Sari, A., Mendil, D., et al. (2008). Biosorption of Cd(II) and Cr(III) from aqueous solution by moss ( / Hylocomium splendens) biomass: equilibrium, kinetic and thermodynamic studies. / Chemical Engineering Journal, 144(1), 1-. CrossRef
    27. Wang, X. S., Qin, Y., et al. (2006). Removal of Ni(II), Zn(II) and Cr(VI) from aqueous solution by / Alternanthera philoxeroides biomass. / Journal of Hazardous Materials, 138(3), 582-88. CrossRef
    28. Vijayaraghavan, K., & Yun, Y. S. (2007). Chemical modification and immobilization of / Corynebacterium glutamicum for biosorption of reactive black 5 from aqueous solution. / Industrial and Engineering Chemistry Research, 46, 608-17. CrossRef
    29. Chen, J. P., Yang, L., et al. (2005). Chemical modification of / Sargassum sp. for prevention of organic leaching and enhancement of uptake during metal biosorption. / Industrial and Engineering Chemistry Research, 44, 9931-942. CrossRef
    30. Murphy, V., Hughes, H., et al. (2008). Comparative study of chromium biossorption by red, green and brown seaweed biomass. / Chemosphere, 70, 1128-134. CrossRef
    31. Zubair, A., Bhatti, H. N., et al. (2008). Kinetic and equilibrium modeling for cr (iii) and cr (vi) removal from aqueous solutions by citrus reticulate waste biomass. / Water, Air, and Soil Pollution, 91, 305-18. CrossRef
    32. Nasernejad, B., Zadeh, T. E., et al. (1996). The selective biosorption of chromium (VI) and copper (II) ions from binary metal mixtures by / R. / arrhizus. / Process Biochemistry, 31(6), 561-72. CrossRef
    33. Ucun, H., Aksakal, O., et al. (2009). Copper (II) and zinc (II) biosorption on / Pinus sylvestris. / Journal of Hazardous Materials, 161(2-), 1040-045. CrossRef
    34. Li, H. F., Lin, Y. B., et al. (2010). Biosorption of Zn(II) by live and dead cells of / Streptommyces ciscaucasicus strain CCNWHX72-14. / Journal of Hazardous Materials, 179, 151-59. CrossRef
    35. Volesky, B. (2001). Detoxification of metal-bearing effluents: biosorption for the next century. / Hydrometallurgy, 59(2-), 203-16. CrossRef
    36. Chand, S., Agarwal, V. K., et al. (1994). Removal of hexavalent Cr from wastewater by adsorption. / Journal of Environmental Health, 36, 151-58.
    37. Blázquez, G., & Hernáinz, F. (2009). The effect of p H on the biosorption of Cr(III) and Cr(VI) with olive stone. / Chemical Engineering Journal, 48(2-), 473-79. CrossRef
    38. Kratochvil, D., Pimentel, P., et al. (1998). Removal of trivalent and hexavalent chromium by seaweed biosorbent. / Environmental Science and Technology, 32, 2693-698. CrossRef
    39. Kang, S. Y., Lee, J. U., et al. (2007). Biosorption of Cr(III) and Cr(VI) onto the cell surface of / Pseudomonas aeruginosa. / Biochemical Engineering Journal, 36, 54-8. CrossRef
    40. Langmuir (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. / Journal of American Chemical Society, 40, 1361.
    41. Mckay, G., Blair, H. S., et al. (1982). Adsorption of dyes on chitin I. Equilibrium studies. / Journal of Applied Polymer Science, 27(8), 3043-057. CrossRef
    42. Gupta, V. K., & Rastogi, A. (2005). Biosorption of copper (II) from aqueous solutions by / Spirogyra species. / Journal of Colloid and Interface Science, 296(1), 59-3. CrossRef
    43. Hammaini, A., González, F., et al. (2007). Biosorption of heavy metals by activated sludge and their desorption characteristics. / Journal of Environmental Management, 84(4), 419-26. CrossRef
    44. Agarwal, G. S., Bhuptawat, H. K., et al. (2006). Biosorption of aqueous chromium(VI) by Tamarindus indica seeds. / Bioresource Technology, 97(7), 949-56. CrossRef
    45. Blázquez, G., Hernáinz, F., et al. (2009). The effect of pH on the biosorption of Cr(III) and Cr(VI) with olive stone. / Chemical Engineering Journal, 148(2-), 473-79. CrossRef
    46. Park, D., Yun, Y., et al. (2004). Reduction of hexavalent chromium with the brown seaweed ecklonia biomass. / Environmental Science and Technology, 38, 4860-864. CrossRef
    47. Elangovan, R., Abhipsa, S., et al. (2006). Reduction of Cr(VI) by a / Bacillus sp. / Biotechnology Letters, 28, 247-52. CrossRef
    48. Kapoor, A., & Viraraghavan, T. (1997). Heavy metal biosorption sites in / Aspergillus niger. / Bioresource Technology, 61(3), 221-27. CrossRef
    49. Wang, S. X., Li, Y., et al. (2010). Adsorption of Cr(VI) from aqueous solutions by / Staphylococcus aureus biomass. / Clean–Soil, Air, Water, 38(5-), 500-05. CrossRef
    50. Loukidou, M. X., Zouboulis, A. I., et al. (2004). Equilibrium and kinetic modeling of chromium(VI) biosorption by / Aeromonas caviae. / Physicochemical and Engineering Aspect, 242, 93-04. CrossRef
    51. Shaili, S., & Indu, S. T. (2006). Biosorption potency of / Aspergillus niger for removal of chromium (vi). / Current Microbiology, 53, 232-37. CrossRef
  • 作者单位:Pin Xie (1)
    Xiuli Hao (1)
    Osama Abdalla Mohamad (1)
    Jianqiang Liang (1)
    Gehong Wei (1)

    1. College of Life Science, State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China
  • ISSN:1559-0291
文摘
The appearance of chromium in the aqueous effluent is a major concern for the modern industry. In this work, Mesorhizobium amorphae strain CCNWGS0123 was investigated as a biosorbent to remove chromium from aqueous solutions. The optimum pH for Cr(III) and Cr(VI) biosorption were 4 and 2, respectively. This isolate showed an experimental maximum Cr(III) adsorption capacity of 53.52?mg?L?, while the result was 47.67?mg?L? for Cr(VI), with an initial 100?mg?L? Cr ions and 1.0?g?L? biomass. In terms of time equilibrium, Cr(III) ion was more readily adsorbed than Cr(VI) by this isolate. The biosorption data of both ions fit the Langmuir isotherm better than that of Freundlich model. Meanwhile, this organism exhibited a good capability to release Cr ions, with desorption efficiency of 70?% for Cr(III) and 76?% for Cr(VI). Fourier transform infrared spectroscopy analysis showed that –OH, –COO, –NH, amide I, and C=O were involved in Cr(III) and Cr(VI) binding. The biosorbent was further characterized by scanning electron microscopy and energy-dispersive X-ray spectrometry, which indicated an accumulation of chromium on the cellular level. In the binary mixtures, the removal ratio of total Cr and Cr(III) increased from pH- to 4. The highest removal ratio of the total Cr was observed in the 25/25?mg?L? mixture at pH-. In addition, the removal efficiency of Cr(VI) was closely influenced by Cr(III) in the mixture, decreasing to 23.57?mg?g? in the 100/100?mg?L? mixture system, due to the competition of Cr(III). The potential usage of the chromium-resistant rhizobium for the remediation of chromium-contaminated effluents has been demonstrated based on the above results.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700