Inverter-based low-noise, 150?μW single-ended to differential SC-VGAs for second harmonic cardiac ultrasound imaging probes
详细信息    查看全文
  • 作者:P. Wang ; T. Ytterdal
  • 关键词:Inverter ; based ; SC ; VGA ; Low power ; Low noise ; Second harmonic distortion ; Ultrasound probes
  • 刊名:Analog Integrated Circuits and Signal Processing
  • 出版年:2015
  • 出版时间:August 2015
  • 年:2015
  • 卷:84
  • 期:2
  • 页码:315-324
  • 全文大小:1,109 KB
  • 参考文献:1.Harrer, J. U., Mayfrank, L., Mull, M., & Kl?tzsch, C. (2003). Second harmonic imaging: a new ultrasound technique to assess human brain tumour perfusion. Journal of Neurology Neurosurgery and Psychiatry, 74(3), 333-38.View Article
    2.van Neer, P. L., Danilouchkine, M. G., Verweij, M. D., Demi, L., Voormolen, M. M., van der Steen, A. F., & de Jong, N. (2011). Comparison of fundamental, second harmonic, and super harmonic imaging: a simulation study. Journal of Acoustical Society of America, 130(5), 3148-157.View Article
    3.Brunner, E. (2002). How ultrasound system considerations influence front-end component choice. Analog Dialogue, 6(3), 1-.
    4.Liu, C., Yan, Y. P., Goh, W. L., Xiong, Y. Z., Zhang, L. J., & Madihian, M. (2012). A 5-Gb/s automatic gain control amplifier with temperature compensation. IEEE Journal of Solid State Circuits., 47(6), 1323-333.View Article
    5.Fu, C. T., & Luong H. (2007). A CMOS linear-in-dB high-linearity variable gain amplifier for UWB receivers. In IEEE Asian solid-state circuits conference, ASSCC-7, pp. 103-06.
    6.Motamed, A., Hwang, C., & Ismail, M. (1998). A low-voltage low-power wide range CMOS variable gain amplifier. IEEE Transactions on circuits and systems—II: Analog and Digital Signal Processing, 45(7), 800-11.View Article
    7.Duong, Q. H., Quan, L., & Lee, S. G. (2005). An all CMOS 84?dB-linear low-power variable gain amplifier. In IEEE symposium on VLSI Circuits, pp. 114-17.
    8.Yamaji, T., Kanou, N., & Itakura, T. (2002). A temperature-stable CMOS variable gain amplifier with 80-dB linearly controlled gain range. IEEE Journal of Solid State Circuits, 37(5), 553-58.View Article
    9.Choi, I., Seo, H., & Kim, B. (2013). Accurate dB-linear variable gain amplifier with gain error compensation. IEEE Journal of Solid State Circuits, 48(2), 456-64.MathSciNet View Article
    10.Elwan, H., Tekin, A., & Pedrotti, K. (2009). A differential-ramp based 65?dB-linear VGA technique in 65?nm CMOS. IEEE Journal of Solid State Circuits, 44(9), 2503-514.View Article
    11.Fujimoto, Y., Tani, H., Maruyama, M., Akada, H., Ogawa, H., & Miyamoto, M. (2004). A low-power switched-capacitor variable gain amplifier. IEEE Journal of Solid State Circuits, 39(7), 1213-216.View Article
    12.Rieger, R. (2011). Variable-gain, low-noise amplification for sampling front ends. IEEE Transactions on Biomedical Circuits and Systems, 5(3), 253-61.MathSciNet View Article
    13.Ronchi D. & Terenzi M. (2012). 4D data ultrasound imaging system and corresponding control process, PCT/EP2011/006556.
    14.Chae, Y., & Han, G. (2009). Low voltage, low power, inverter-based switched-capacitor delta-sigma modulator. IEEE Journal of solid state circuits, 44(2), 458-72.View Article
    15.Wang, P., Halvorsr?d, T., & Ytterdal, T. (2013). A 12b-control ultra-low-power low-noise SCVGA for medical ultrasound probes. IET The Journal of Engineering (JOE),. doi:10.-049/?JOE.-013.-088 .
    16.Wang, P., Halvorsr?d, T., & Ytterdal, T. (2013). A low-power, low-noise, and low-cost VGA for second harmonic imaging ultrasound probes. In: IEEE Conference on biomedical circuits and systems, BioCAS-3, pp. 314-17.
    17.Fujimoto, Y., Akada, H., Ogawa, H., Iizuka, K., & Miyamoto, M. (2002). A switched-capacitor variable gain amplifier for CCD image sensor interface system. In IEEE European solid state circuits conference, ESSCIRC-2, 2002, pp. 363-66.
    18.Wang, P., Halvorsr?d, T., & Ytterdal T. (2013). A low noise single-end to differential switched-capacitor VGA for PZT Xducer ultrasound imaging. In IEEE 2013 European conference on circuit theory and design, ECCTD 2013, pp. 1-
    19.Wang, P., Halvorsr?d, T., & Ytterdal, T. (2014). 0.5?V inverter-based ultra-low-power, low-noise VGA for medical ultrasound probes. IET Electronics Letters, 50(2), 69-1.View Article
    20.Nakamura, K., Decker, S., Kelly, D., Das, D., St. Onge, L., Mehr, L., Walsh, M., Swanson, E., Picano, P., Mangelsdorf, C., Yamaguchi, H. , Nishio, K., & Senda, T. (2000). A CMOS analog front-end chip-set for mega pixel camcorders. In: IEEE international solid-state circuits conference, (ISSCC-0), San Francisco, pp. 190-91.
    21.Jarjani, R. (1995). A low-power CMOS VGA for 50?Mb/s disk drive read channels. IEEE Transactions on Circuits And Systems-II: Analog and Digital Signal Processing, 42(6), 370-76.View Article
    22.Schreier, R., Silva, J., Steensgaard, J., & Temes, G. C. (2005). Design-oriented estimation of thermal noise in switched-capacitor circuits. IEEE Transactions on Circuits And Systems-I: Regular Papers, 52(11), 2358-368.View Article
    23.Murmann, B. (2012). Thermal noise in track-and-hold circuits: analysis and simulation techniques. IEEE Solid State Circuits Magazine, 4(2), 46-4.View Article
    24.Tedja, S., Van der Spiegel, J., & Williams, H. H. (1994). Analytical and experimental studies of thermal noise in MOSFETs. IEEE Transactions on Electron Devices, 41(11), 2069-075.View Article
    25.Lujan, C
  • 作者单位:P. Wang (1)
    T. Ytterdal (1)

    1. Department of Electronics and Telecommunication (IET), Norwegian University of Science and Technology (NTNU), NO 7491, Trondheim, Norway
  • 刊物类别:Engineering
  • 刊物主题:Circuits and Systems
    Electronic and Computer Engineering
    Signal,Image and Speech Processing
  • 出版者:Springer Netherlands
  • ISSN:1573-1979
文摘
This paper presents two inverter-based low-noise, low-power, single-ended to differential switched-capacitor variable gain amplifiers (SC-VGAs) for 2--MHz second harmonic cardiac ultrasound imaging probes fabricated with 0.18?μm complementary metal–oxide–semiconductor technology. By employing inverters in class C mode instead of operational trans-conductance amplifiers, the power consumption of 150?μW at a supply voltage of 1?V is achieved for both VGAs; ?5 and ?2?dBm of integrated noise with 2--MHz bandwidth at maximum gain and a sampling frequency of 30?MHz are achieved for VGA1 and VGA2, respectively. Both VGAs have two stages. VGA1 uses a fully switched-capacitor approach for gain control, and the gain range is ?1-1?dB with 12-bit capacitor arrays. VGA2 adopts an inverter-based SC-VGA in the first stage with a 6-bit capacitor array to tune the gain from ? to 9?dB, and the second stage is a differential amplifier with a 4-bit thermometer-coded resistor array to tune the gain from 0 to 13?dB. Both SC-VGAs complete the single-ended to differential conversion in the second stage to suppress the second harmonic distortion (HD2). Both VGAs have HD2 less than ?0?dB. The die size of VGA1 is 245?μm?×?134?μm, and the die size of VGA2 is 109?μm?×?164?μm.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700