Proteomic analysis of fibroblastema formation in regenerating hind limbs of Xenopus laevis froglets and comparison to axolotl
详细信息    查看全文
  • 作者:Nandini Rao (8)
    Fengyu Song (9)
    Deepali Jhamb (10)
    Mu Wang (12)
    Derek J Milner (16)
    Nathaniel M Price (11)
    Teri L Belecky-Adams (13)
    Mathew J Palakal (15)
    Jo Ann Cameron (16)
    Bingbing Li (14)
    Xiaoping Chen (11)
    David L Stocum (13)

    8. Department of Biochemistry and Genetics
    ; School of Medicine ; American University of Antigua ; Coolidge ; Antigua ; West Indies
    9. Department of Oral Biology
    ; School of Dentistry and Center for Developmental and Regenerative Biology ; Indiana University-Purdue University Indianapolis ; Indianapolis ; IN ; USA
    10. School of Informatics and Computing
    ; Indiana University-Purdue University Indianapolis ; Indianapolis ; IN ; USA
    12. Department of Biochemistry and Molecular Biology
    ; School of Medicine ; and Center for Developmental and Regenerative Biology ; Indiana University-Purdue University Indianapolis ; Indianapolis ; IN ; USA
    16. Department of Cell and Developmental Biology
    ; and Regeneration Biology and Tissue Engineering Theme ; Institute for Genomic Biology ; University of Illinois-Urbana Champaign ; Urbana ; IL ; USA
    11. Department of Biology
    ; Indiana University-Purdue University Indianapolis ; Indianapolis ; IN ; USA
    13. Department of Biology
    ; and Center for Developmental and Regenerative Biology ; Indiana University-Purdue University Indianapolis ; Indianapolis ; IN ; USA
    15. School of Informatics and Computing
    ; and Center for Developmental and Regenerative Biology ; Indiana University-Purdue University ; Indianapolis ; IN ; USA
    14. Department of Chemistry
    ; Central Michigan University ; Mt. Pleasant ; MI ; USA
  • 关键词:Regeneration ; Xenopus hindlimb ; Proteomic analysis ; Fibroblastema formation ; Comparison to axolotl
  • 刊名:BMC Developmental Biology
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:14
  • 期:1
  • 全文大小:1,298 KB
  • 参考文献:1. Stocum, DL, Cameron, JA (2011) Looking proximally and distally: 100 years of limb regeneration and beyond. Dev Dyn 240: pp. 943-968
    2. Nacu, E, Tanaka, EM (2011) Limb regeneration: a new development?. Ann Rev Cell Dev Biol 27: pp. 409-440
    3. Seifert, AW, Monaghan, JR, Smith, MD, Pasch, B, Stier, AC, Michonneau, F, Maden, M (2011) The influence of fundamental traits on mechanisms controlling appendage regeneration. Biol Rev 87: pp. 330-345
    4. Globus, M, Vethamany-Globus, S, Lee, YCI (1980) Effect of apical epidermal cap on mitotic cycle and cartilage differentiation in regeneration blastemata in the newt, Notophthalmus viridescens. Dev Biol 75: pp. 358-372
    5. Endo, T, Bryant, SV, Gardiner, DM (2004) A stepwise model system for limb regeneration. Dev Biol 270: pp. 135-145
    6. Kumar, A, Godwin, JW, Gates, PB, Garza-Garcia, AA, Brockes, JP (2007) Molecular basis for the nerve dependence of limb regeneration in an adult vertebrate. Science 318: pp. 772-777
    7. Brockes, JP, Kumar, A (2008) Comparative aspects of animal regeneration. Ann Rev Cell Dev Biol 24: pp. 525-549
    8. Stocum, DL (2011) The role of peripheral nerves in urodele limb regeneration. Eur J Neurosci 34: pp. 908-916
    9. Monaghan, JR, Athippozhy, A, Seifert, AW, Putta, S, Stromberg, AJ, Maden, M, Gardiner, DM, Voss, SR (2012) Gene expression patterns specific to the regenerating limb of the Mexican axolotl. Biology Open 1: pp. 937-948
    10. Knapp, D, Schulz, H, Rascon, CA, Volkmer, M, Scholz, J, Nacu, E, Le, M, Novozhilov, S, Tazaki, A, Protze, S, Jacob, T, Hubner, N, Habermann, B, Tanaka, EM (2013) Comparative transcriptional profiling of the axolotl limb identifies a tripartite regeneration-specific gene program. PLoS One 8: pp. e61352
    11. Stewart, R, Rascon, CA, Tian, S, Nie, J, Barry, C, Chu, L-F, Ardalani, H, Wagner, RJ, Probasco, MD, Bolin, JM, Leng, N, Sengupta, S, Volkmer, M, Habermann, B, Tanaka, EM, Thomson, JA, Dewey, CN (2013) Comparative RNA-seq analysis in the unsequenced axolotl: The oncogene burst highlights early gene expression in the blastema. PLOS Computat Biol 9: pp. e1002936
    Nieuwkoop, PD, Faber, J eds. (1956) Normal table of Xenopus laevis (Daudin): A systematicall and chronological survey of the development from the fertilized egg till the end of metamorphosis. North-Holland Pub Co, Amsterdam
    12. Dent, JN (1962) Limb regeneration in larvae and metamorphosing individuals of the South African clawed toad. J Morph 110: pp. 61-77
    13. Suzuki, M, Yakushiji, N, Nakada, Y, Satoh, A, Ide, H, Tamura, K (2006) Limb regeneration in Xenopus laevis froglet. TSW Develop Embryol 1: pp. 26-37
    14. Kawasuki, A, Sagawa, N, Hayashi, S, Yokoyama, H, Tamura, K (2013) Wound healing in mammals and amphibians: toward limb regeneration in mammals. Curr Topics Microbio Immunol 367: pp. 33-74
    15. Wolfe, AD, Nye, HL, Cameron, JA (2000) Extent of ossification at the amputation plane is correlated with the decline of blastema formation and regeneration in Xenopus laevis hindlimbs. Dev Dyn 218: pp. 681-697
    16. Sessions, SK, Bryant, SV (1988) Evidence that regenerative ability is an intrinsic property of limb cells in Xenopus. J Exp Zool 247: pp. 39-44
    17. Filoni, S, Velloso, CP, Bernardini, S, Cannata, SM (1995) Acquisition of nerve dependence for the formation of a regeneration blastema in amputated hindlimbs of larval Xenopus laevis: the role of limb innervation and that of limb differentiation. J Exp Zool 1995: pp. 327-341
    18. Skowron, SK, Komala, Z (1957) Limb regeneration in postmetamorphic Xenopus laevis. Folia Biol Krakow 5: pp. 53-72
    19. Khan, PA, Liversage, RA (1990) Ultrastructural comparison between regenerating and developing hindlimbs of Xenopus laevis tadpoles. Growth Develop Aging 54: pp. 173-181
    20. Goss, RJ, Holt, R (1992) Epimorphic vs. tissue regeneration in Xenopus forelimbs. J Exp Zool 261: pp. 451-457
    21. Suzuki, M, Satoh, A, Ide, H, Tamura, K (2005) Nerve-dependent and -independent events in blastema formation during Xenopus froglet limb regeneration. Dev Biol 286: pp. 361-375
    22. Suzuki, M, Satoh, A, Ide, H, Tamura, K (2007) Transgenic Xenopus with prx1 limb enhancer reveals crucial contribution of MEK/ERK and PI3K/AKT pathways in blastema formation during limb regeneration. Dev Biol 2007: pp. 675-686
    23. Satoh, A, James, MA, Gardiner, DM (2009) The role of nerve signaling in limb genesis and agenesis during axolotl limb regeneration. J Bone Joint Surg 91: pp. 90-98
    24. Furlong, ST, Heidemann, MK, Bromley, SC (1985) Fine structure of the forelimb regenerate of the African clawed toad, Xenopus laevis. Anat Rec 1985: pp. 444-449
    25. Komala, Z (1957) Poro麓 wnawcze badania nad przebiegiem ontogenezy I regen eracji konczynkon麓czyn kijanek Xenopus laevis w ro麓 znychro麓 znych okresach rozwojowych. Folia Biol Krakow 5: pp. 1-52
    26. Korneluk, RG, Liversage, RA (1984) Effects of radius鈥搖lna removal on forelimb regeneration in Xenopus laevis froglets. J Embryol Exp Morph 82: pp. 9-24
    27. Harty, M, Neff, AW, King, MW, Mescher, AL (2003) Regeneration or scarring: an immunologic perspective. Devel Dynam 226: pp. 268-279
    28. Mescher, AL, Neff, AW (2005) Regenerative capacity and the developing immune system. Adv in Biochem Eng/Biotechnol 93: pp. 39-66
    29. Mescher, AL, Neff, AW (2006) Limb regeneration in amphibians: immunological considerations. TheScientificWorldJOURNAL 6: pp. 1-11
    30. Endo, T, Tamura, K, Ide, H (2000) Analysis of gene expressions during Xenopus forelimb regeneration. Dev Biol 220: pp. 296-306
    31. King, MW, Nguyen, T, Calley, J, Harty, MW, Muzinich, MC, Mescher, AL, Chalfant, C, N'Cho, M, McLeaster, K, McEntire, J, Stocum, D, Smith, RC, Neff, AW (2003) Identification of genes expressed during Xenopus laevis limb regeneration by using subtractive hybridization. Develop Dyn 226: pp. 398-409
    32. Grow, M, Neff, AW, Mescher, AL, King, MW (2006) Global analysis of gene expression in Xenopus hindlimbs during stage-dependent complete and incomplete regeneration. Dev Dyn 235: pp. 2667-2685
    33. Pearl, EJ, Barker, R, Day, RC, Beck, CW (2008) Identification of genes associated with regenerative success of Xenopus laevis hindlimbs. BMC Dev Biol 8: pp. 66
    34. Ohgo, S, Itoh, A, Suzuki, M, Satoh, A, Yokoyama, H, Tamura, K (2010) Analysis of hoxa11 and hoxa13 expression during patternless limb regeneration in Xenopus. Dev Biol 338: pp. 148-157
    35. Yakushiji, N, Suzuki, M, Satoh, A, Sagai, T, Shiroishi, T, Kobayashi, H, Sasaki, H, Ide, H, Tamura, K (2007) Correlation between Shh expression and DNA methylation status of the limb-specific Shh enhancer region during limb regeneration in amphibians. Dev Biol 312: pp. 171-182
    36. Bodemer, CW, Everett, NB (1959) Localization of newly synthesized proteins in regenerating newt limbs as determined by radioautographic localization of injected methionine-S35. Dev Biol 1959: pp. 327-342
    37. Lebowitz, P, Singer, M (1970) Neurotrophic control of protein synthesis in the regenerating limb of the newt Triturus. Nature 225: pp. 824-827
    38. Singer, M, Ilan, J (1977) Nerve-dependent regulation of absolute rates of protein synthesis in newt limb regenerates: measurement of methionine specific activity in peptidyl-tRNA of the growing polypeptide chain. Dev Biol 57: pp. 174-187
    39. Dearlove, GE, Stocum, DL (1974) Denervation-induced changes in soluble protein content during forelimb regeneration in the adult newt, Notophthalmus viridescens. J Exp Zool 190: pp. 317-328
    40. Slack, JM (1982) Protein synthesis during limb regeneration in the axolotl. J Embryol Exp Morph 70: pp. 241-260
    41. Tsonis, PA, Mescher, A, Del Rio-Tsonis, K (1992) Protein synthesis in the newt regenerating limb. Biochem 1992: pp. 665-668
    42. Tsonis, PA (1993) A comparative two-dimensional gel protein database of the ntact and regenerating newt limbs. Electrophoresis 14: pp. 148-156
    43. King, MW, Neff, AW, Mescher, AL (2009) Proteomics analysis of regenerating amphibian limbs: changes during the onset of regeneration. Int J Dev Biol 53: pp. 955-969
    44. Rao, N, Jhamb, D, Milner, DJ, Li, B, Song, F, Wang, M, Voss, SR, Palakal, M, King, MW, Saranjami, B, Nye, HL, Cameron, JA, Stocum, DL (2009) Proteomic analysis of blastema formation in regenerating axolotl limbs. BMC Biol 7: pp. 83
    45. Jhamb, D, Rao, N, Milner, DJ, Song, F, Cameron, JA, Stocum, DL, Palakal, MJ (2011) Network based transcription factor analysis of regenerating axolotl limbs. BMC Bioinformatics 12: pp. 80
    46. Lodish, H, Berk, A, Kaiser, CA, Krieger, M, Bretscher, A, Ploegh, H, Amon, A, Scott, MP (2012) Molecular Cell Biology. W.H. Freeman, New York
    47. Martelly, I (1984) Calcium thresholds in the activation of DNA and RNA synthesis in cultured planarian cells: relationship with hormonal and DB cAMP effects. Cell Diff 15: pp. 25-36
    48. Jenkins, LS, Duerstock, BS, Borgens, RB (1996) Reduction of the current of injury leaving the amputation inhibits limb regeneration in the red spotted newt. Dev Biol 178: pp. 251-262
    49. Adams, DS, Masi, A, Levin, M (2007) H鈥?鈥塸ump-dependent changes in membrane voltage are an early mechanism necessary and sufficient to induce Xenopus tail regeneration. Development 134: pp. 1323-1335
    50. Tsonis, PA, English, D, Mescher, AL (1991) Increased content of inositol phosphates in amputated limbs of axolotl larvae, and the effect of beryllium. J Exp Zool 259: pp. 252-258
    51. Thornton, CS (1968) Amphibian limb regeneration. Adv in Morphogenesis 7: pp. 205-249
    52. Lizarbe, MA, Barrasa, JI, Olmo, N, Gavilanes, F, Turnay, J (2013) Annexin-phospholipid interactions: functional implications. Int J Mol Sci 14: pp. 2652-2683
    53. Oudhkir, M, Martelly, I, Castagna, M, Moraczewski, J, Boilly, B Protein kinase C activity during limb regeneration of amphibians. In: Kiortsis, V, Koussoulakos, S, Wallace, H eds. (1989) Recent Trends in Regeneration Research. Plenum Press, New York, pp. 69-79
    54. Menaa, C, Devlin, RD, Reddy, SV, Gazitt, Y, Choi, SJ, Roodman, GD (1999) Annexin II increases osteoclast formation by stimulating the proliferation of osteoclast precursors in human marrow cultures. J Clin Investig 103: pp. 1605-1613
    55. Singer, M, Salpeter, MM (1961) The bodies of Eberth and associated structures in the skin of the frog tadpole. J Exp Zool 147: pp. 1-19
    56. Caldwell, RL, Caprioli, RM (2005) Tissue profiling by mass spectrometry: a review of methodology and applications. Mol & Cell Proteomics 4: pp. 394-401
    57. Caldwell, RL, Opalenik, SR, Davidson, JM, Caprioli, RM, Nanney, LB (2008) Tissue profiling MALDI mass spectrometry reveals prominent calcium-binding proteins in the proteome of regenerative MRL mouse wounds. Wound Rep Reg 16: pp. 442-449
    58. Lowenstein, CJ, Snyder, SH (1992) Nitric oxide, a novel biologic messenger. Cell 70: pp. 705-707
    59. Maden, M (1997) Retinoic acid and its receptors in limb regeneration. Sem Cell Dev Biol 8: pp. 445-453
    60. Vinarsky, V, Atkinson, DL, Stevenson, TJ, Keating, MT, Odelberg, SJ (2005) Normal newt limb regeneration requires matrix metalloproteinase function. Dev Biol 279: pp. 86-98
    61. Santosh, N, Windsor, LJ, Mahmoudi, BS, Li, B, Zhang, W, Chernoff, EA, Rao, N, Stocum, DL, Song, F (2011) Matrix metalloproteinase expression during blastema formation in regeneration-competent versus regeneration-deficient amphibian limbs. Dev Dyn 240: pp. 1127-1141
    62. Mount, JG, Muzylak, M, Allen, S, Althnaian, T, McGonnell, IM, Price, JS (2006) Evidence that the canonical Wnt signalling pathway regulates deer antler regeneration. Dev Dyn 235: pp. 1390-1399
    63. Stoick-Cooper, CL, Weidinger, G, Riehle, KJ, Hubbert, C, Major, MB, Fausto, N, Moon, RT (2007) Distinct Wnt signaling pathways have opposing roles in appendage regeneration. Development 134: pp. 479-489
    64. Ghosh, S, Roy, S, Seguin, C, Bryant, SV, Gardiner, DM (2008) Analysis of the expression and function of Wnt-5a and Wnt-5b in developing and regenerating axolotl (Ambystoma mexicanum) limbs. Dev Growth Diff 50: pp. 289-297
    65. Yokoyama, H, Ogino, H, Stoick-Cooper, CL, Grainger, RM, Moon, RT (2007) Wnt/beta-catenin signaling has an essential role in the initiation of limb regeneration. Dev Biol 306: pp. 170-178
    66. Yokoyama, H, Maruoka, T, Ochi, H, Aruga, A, Ohgo, S, Ogino, H, Tamura, K (2011) Different requirement for Wnt/beta-catenin signaling in limb regeneration of larval and adult Xenopus. PLoS One 6: pp. e21721
    67. Kestler, HA, Kuhl, M (2008) From individual Wnt pathways towards a Wnt signalling network. Phil Transact Royal Soc London Series B, Biol Sci 363: pp. 1333-1347
    68. Flanagan, JG, Vanderhaeghen, P (1998) The ephrins and Eph receptors in neural development. Ann Rev Neurosci 21: pp. 309-345
    69. Wilkinson, DG (2001) Multiple roles of EPH receptors and ephrins in neural development. Nat Rev Neurosci 2: pp. 155-164
    70. Filoni, S, Velloso, CP, Bernardini, A, Cannata, SM (1995) Acquisition of nerve dependence for the formation of a regeneration blastema in amputated hindlimbs of larval Xenopus laevis: the role of limb innervation and that of limbv differentiation. J Exp Zool 273: pp. 327-341
    71. Piccolo, S, Agius, E, Leyns, L, Bhattacharyya, S, Grunz, H, Bouwmeester, T, De Robertis, EM (1999) The head inducer Cerberus is a multifunctional antagonist of Nodal, BMP and Wnt signals. Nature 397: pp. 707-710
    72. Carlson, BM (1969) Inhibition of limb regeneration in the axolotl after treatment of the skin with actinomycin D. Anat Rec 163: pp. 389-401
    73. Crews, L, Gates, PB, Brown, R, Joliot, A, Foley, C, Brockes, JP, Gann, AA (1995) Expression and activity of the newt Msx-1 gene in relation to limb regeneration. Proc Royal Soc (Biological Sciences) 259: pp. 161-171
    74. Cadinouche, MZ, Liversage, RA, Muller, W, Tsilfidis, C (1999) Molecular cloning of the Notophthalmus viridescens radical fringe cDNA and characterization of its expression during forelimb development and adult forelimb regeneration. Develop Dyn 214: pp. 259-268
    75. Shimizu-Nishikawa, K, Tsuji, S, Yoshizato, K (2001) Identification and characterization of newt rad (ras associated with diabetes), a gene specifically expressed in regenerating limb muscle. Dev Dyn 20: pp. 74-86
    76. Mullen, LM, Bryant, SV, Torok, MA, Blumberg, B, Gardiner, DM (1996) Nerve dependency of regeneration: the role of Distal-less and FGF signaling in amphibian limb regeneration. Development 122: pp. 3487-3497
    77. Satoh, A, Graham, GMC, Bryant, SV, Gardiner, DM (2008) Neurotrophic regulation of epidermal dedifferentiation during wound healing and limb regeneration in the axolotl (Ambystoma mexicanum). Dev Biol 319: pp. 321-335
    78. Koshiba-Takeuchi, K, Takeuchi, JK, Arruda, EP, Kathiriya, IS, Mo, R, Hui, CC, Srivastava, D, Bruneau, BG (2006) Cooperative and antagonistic interactions between Sall4 and Tbx5 pattern the mouse limb and heart. Nat Genet 38: pp. 175-183
    79. Zhu, W, Kuo, D, Nathanson, J, Satoh, A, Pao, GM, Yeo, GW, Bryant, SV, Voss, SR, Gardiner, DM, Hunter, T (2012) Retrotransposon long interspersed nucleotide element-1 (LINE-1) is activated during salamander limb regeneration. Dev Growth Diff 54: pp. 673-685
    80. Zhu, W, Pao, GM, Satoh, A, Cummings, G, Monaghan, JR, Harkins, TT, Bryant, SV, Voss, SR, Gardiner, DM, Hunter, T (2012) Activation of germline-specific genes is required for limb regeneration in the Mexican axolotl. Dev Biol 370: pp. 42-51
    81. Takahashi, K, Tanabe, K, Ohnuki, M, Narita, M, Ichisaka, T, Tomoda, K, Yamanaka, S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131: pp. 861-872
    82. Yu, J, Vodyanik, MA, Smuga-Otto, K, Antosiewicz-Bourget, J, Frane, JL, Tian, S, Nie, J, Jonsdottir, GA, Ruotti, V, Stewart, R, Slukvin, II, Thomson, JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318: pp. 1917-1920
    83. Yamanaka, S (2012) Induced pluripotent stem cells: past, present and future. Cell Stem Cell 10: pp. 678-684
    84. Maki, N, Suetsugu-Maki, R, Sano, S, Nakamura, K, Nishimura, O, Tarui, H, Del Rio-Tsonis, K, Ohsumi, K, Agata, K, Tsonis, PA (2010) Oocyte-type linker histone B4 is required for transdifferentiation of somatic cells in vivo. FASEB J 24: pp. 3462-3467
    85. Maki, N, Suetsugu-Maki, R, Tarui, H, Agata, K, Del Rio-Tsonis, K, Tsonis, PA (2009) Expression of stem cell pluripotency factors during regeneration in newts. Dev Dyn 238: pp. 1613-1616
    86. Dixon, JE, Allegrucci, C, Redwood, C, Kump, K, Bian, Y, Chatfield, J, Chen, Y-H, Sottile, V, Voss, SR, Alberio, R, Johnson, AD (2010) Axolotl Nanog activity in mouse embryonic stem cells demonstrates that ground state pluripotency is conserved from urodele amphibians to mammals. Development 137: pp. 2973-2980
    87. Kragl, M, Knapp, D, Nacu, E, Khattak, S, Maden, M, Epperlein, HH, Tanaka, EM (2009) Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature 460: pp. 60-65
    88. Christen, B, Robles, V, Raya, M, Paramonov, I, Izpisua -Belmonte, JC (2010) Regeneration and reprogramming compared. BMC Biol 8: pp. 5
    89. Neff, AW, King, MW, Harty, MW, Nguyen, T, Calley, J, Smith, RC, Mescher, AL (2005) Expression of Xenopus XlSALL4 during limb development and regeneration. Dev Dyn 233: pp. 356-367
    90. Neff, AW, King, MW, Mescher, AL (2011) Dediffeentiation and the sole of sall4 in reprogramming and patterning during amphibian limb regeneration. Dev Dyn 240: pp. 979-989
    91. Tzchori, I, Day, TF, Carolan, PJ, Zhao, Y, Wassif, CA, Li, LQ, Lewandowski, M, Gorivodsky, M, Love, PE, Porter, FD, Westphal, H, Yang, Y (2009) LIM homeobox transcription factors integrate signaling events that control three-dimensional limb patterning and growth. Development 136: pp. 1375-1385
    92. Lin, Y, Martin, J, Gruendler, C, Farley, J, Meng, X, Li, BY, Lechleider, R, Huff, C, Kim, RH, Grasser, WA, Paralkar, V, Wang, T (2002) A novel link between the proteasome pathway and the signal transduction pathway of the bone morphogenetic proteins (BMPs). BMC Cell Biol 3: pp. 15
    93. Guimond, JC, Levesque, M, Michaud, PL, Berdugo, J, Finnson, K, Philip, A, Roy, S (2010) BMP-2 functions independently of SHH signaling and triggers cell condensation and apoptosis in regenerating axolotl limbs. BMC Dev Biol 10: pp. 15
    94. Wilson, JM, Martinez-De Luna, RI, El Hodiri, HM, Smith, R, King, MW, Mescher, AL, Neff, AW, Belecky-Adams, TL (2010) RNA helicase Ddx39 is expressed in the developing central nervous system, limb, otic vesicle, branchial arches and facial mesenchyme of Xenopus laevis. Gene Express Patt 10: pp. 44-52
    95. Bock-Marquette, I, Saxena, A, White, MD, Dimaio, JM, Srivastava, D (2004) Thymosin beta4 activates integrin-linked kinase and promotes cardiac cell migration, survival and cardiac repair. Nature 432: pp. 466-472
    96. Lin, G, Chen, Y, Slack, JMW (2013) Imparting regenerative capacity to limbs by progenitor cell transplantation. Dev Cell 24: pp. 41-51
    97. Hay, E (1959) Electron microscope observations of muscle dedifferentiation in regeneration of Amblystoma limbs. Dev Biol 1: pp. 555-585
    98. Mescher, AL (1996) The cellular basis of limb regeneration in urodeles. Int J Dev Biol 40: pp. 785-795
    99. Kumar, A, Brockes, JP (2002) Plasticity and reprogramming of differentiated cells in amphibian regeneration. Nat Rev Mol Cell Biol 99: pp. 566-574
    100. Sandoval-Guzman, T, Wang, H, Khattak, S, Schuez, M, Roench, K, Nacu, E, Tazaki, A, Joven, A, Tanaka, EM, Simon, A (2014) Fundamental differences in dedifferentiation and stem cell recruitmant during skeletal muscle regeneration in two salamander species. Cell Stem Cell 14: pp. 1-14
    101. Satoh, A, Suzuki, M, Amano, T, Tamura, K, Ide, H (2005) Joint development in Xenopus laevis and induction of segmentations in regenerating froglet limb (spike). Dev Dyn 233: pp. 1444-1453
    102. Shyh-Chang, N, Zhu, H, Yvanka de Soysa, T, Shinods, G, Seligson, MT, Tsanov, KM, Nguyen, L, Asara, JM, Cantley, LC, Faley, GQ (2013) Lin 28 enhances tissue repair by reprogramming cellular metabolism. Cell 155: pp. 778-792
    103. Gorsic, M, Majdic, G, Komel, R (2008) Identification of differentially expressed genes in 4-day axolotl limb blastema by suppression subtractive hybridization. J Physiol Biochem 64: pp. 37-50
    104. Needham, AE (1952) Regeneration and Wound Healing. Methuen & Co, London, UK
    105. Schmidt, AJ (1966) The Molecular Basis of Regeneration: Enzymes. University of Illinois Press, Urbana, IL, USA
    106. Schmidt, AJ (1968) Cellular Biology of Vertebrate Regeneration and Repair. University of Chicago Press, Chicago, IL, USA
    107. Reid, MB (1998) Role of nitric oxide in skeletal muscle: synthesis, distribution and functional importance. Acta Physiol Scand 162: pp. 401-409
    108. Maden, M (1985) Retinoids and the control of pattern in limb development and regeneration. Trends in Genet 1: pp. 103-107
    109. Maden, M, Hind, M (2003) Retinoic acid, a regeneration-inducing molecule. Dev Dyn 226: pp. 237-244
    110. McEwen, J, Lynch, J, Beck, CW (2011) Expression of key retnoic acid modulating genes suggests active regulation during development and regeneration of the amphibian limb. Dev Dynam 240: pp. 1259-1270
    111. Mescher, AL, Connell, E, Hsu, C, Patel, C, Overton, B (1977) Transferrin is necessary and sufficient for the neural effect on growth in amphibian limb regeneration blastemas. Dev Growth Diff 39: pp. 677-684
    112. Cannata, SM, Bernardini, S, Filoni, S (1992) Regenerative responses in cultured hindlimb stumps of larval Xenopus laevis. J Exp Zool 262: pp. 446-453
    113. Yokoyama, H (2008) Initiation of limb regeneration: the critical steps for regenerative capacity. Dev Growth Diff 50: pp. 13-22
    114. Godwin, JW, Pito, R, Rosenthal, NA (2013) Macrophages are required for adult salamander limb regeneration. Proc Natl Acad Sci U S A 110: pp. 9415-9420
    115. Peadon, AM, Singer, M (1966) The blood vessels of the regenerating limb of the adult newt, Triturus. J Morph 118: pp. 79-89
    116. Kim, JW, Dang, CV (2005) Multifaceted roles of glycolytic enzymes. Trends Biochem Sci 30: pp. 142-150
    117. Funasaka, T, Yanagawa, T, Hogan, V, Raz, A (2005) Regulation of phosphoglucose isomerase/autocrine motility factor expression by hypoxia. FASEB J 19: pp. 1422-1430
    118. Mylotte, LA, Duffy, AM, Murphy, M, O'Brien, T, Samali, A, Barry, F, Szegezdi, E (2008) Metabolic flexibility permits mesenchymal stem cell survival in an ischemic environment. Stem Cells 26: pp. 1325-1336
    119. Solorzano, L, Rieber, MS, Medina, JD, Rieber, M (2005) Decreased glycolytic metabolism accelerates apoptosis in response to 2-acetyl furanonaphthoquinone in K1735 melanoma irrespective of bcl-2 overexpression. Cancer Biol Ther 4: pp. 329-335
    120. Mescher, AL, White, GW, Brokaw, JJ (2000) Apoptosis in regenerating and denervated, nonregenerating urodele forelimbs. Wound Rep Reg 8: pp. 110-116
    121. Atkinson, DL, Stevenson, TJ, Park, EJ, Riedy, MD, Milash, B, Odelberg, SJ (2006) Cellular electroporation induces dedifferentiation in intact newt limbs. Dev Biol 299: pp. 257-271
    122. Tseng, AS, Adams, DS, Qiu, D, Koustubhan, P, Levin, M (2007) Apoptosis is required during early stages of tail regeneration in Xenopus laevis. Dev Biol 301: pp. 62-69
    123. Sirbulescu, RF, Zupanc, GK (2010) Inhibition of caspase-3-mediated apoptosis improves spinal cord repair in a regeneration-competent vertebrate system. Neurosci 171: pp. 599-612
    124. Kaufman, RJ (2002) Orchestrating the unfolded protein response in health and disease. J Clin Investig 110: pp. 1389-1398
    125. Ellgaard, L, Helenius, A (2003) Quality control in the endoplasmic reticulum. Nat Rev Mol Cell Biol 4: pp. 181-191
    126. Levesque, M, Gatien, S, Finnson, K, Desmeules, S, Villiard, E, Pilote, M, Philip, A, Roy, S (2007) Transforming growth factor:尾 signaling is essential for limb regeneration in axolotls. PLoS One 2: pp. e1277
    127. Vethamany-Globus, S (1987) Hormone action in newt limb regeneration: insulin and endorphins. Biochem Cell Biol 65: pp. 730-738
    128. Vethamany-Globus, S (1989) Immunohistochemical localization of beta-endorphin-like material in the urodele and anuran amphibian tissues. Gen Comp Endocrinol 75: pp. 271-279
    129. Vethamany-Globus, S, Globus, M, Milton, G (1984) Beta-endorphins (beta-EP) in amphibians: higher beta-EP levels during regenerating stages of anuran life cycle and immunocytochemical localization of beta-EP in regeneration blastemata. J Exp Zool 232: pp. 259-267
    130. Villiard, E, Brinkman, H, Moiseeva, O, Malette, FA, Ferbeyre, G, Roy, S (2007) Urodele p53 tolerates mino acid changes found in p53 variants linked to human cancer. BMC Evol Biol 7: pp. 180
    131. Yun, MH, Gates, PB, Brockes, JP (2013) Regulation of p53 is critical for vertebrate limb regeneration. Proc Natl Acad Sci U S A 110: pp. 17392-17397
    132. Kelly, DJ, Tassava, RA (1973) Cell division and ribonucleic acid synthesis during the initiation of limb regeneration in larval axolotls (Ambystoma mexicanum). J Exp Zool 185: pp. 45-54
    133. Abdel-Karim, AE, Michael, MI, Anton, HJ (1990) Mitotic activity in the blastema and stump tissues of regenerating hind limbs of Xenopus laevis larvae after amputation at ankle level: an autoradiographic study. Folia Morphol (Warsz) 38: pp. 1-11
    134. Eldridge, AG, Loktev, AV, Hansen, DV, Verschuren, EW, Reimann, JD, Jackson, PK (2006) The evi5 oncogene regulates cyclin accumulation by stabilizing the anaphase-promoting complex inhibitor emi1. Cell 124: pp. 367-380
    135. Lian, I, Kim, J, Okazawa, H, Zhao, J, Yu, J, Chinnaiyan, A, Israel, MA, Goldstein, LSB, Abujourar, R, Ding, S, Guan, K-L (2010) The role of YAP transcription coactivator in reguating stem cell self-renewal and differentiation. Genes Dev 24: pp. 1106-1118
    136. Zhao, B, Tumaneng, K, Guan, KL (2011) The Hippo pathway in organ size control, tissue regeneration and stem cell self-rennewal. Nat Cell Biol 13: pp. 877-883
    137. Westlake, CJ, Junutula, JR, Simon, GC, Pilli, M, Prekeris, R, Scheller, RH, Jackson, PK, Eldridge, AG (2007) Identification of Rab11 as a small GTPase binding protein for the Evi5 oncogene. Proc Natl Acad Sci U S A 104: pp. 1236-1241
    138. Dabbeekeh, JT, Faitar, SL, Dufresne, CP, Cowell, JK (2007) The EVI5 TBC domain provides the GTPase-activating protein motif for RAB11. Oncogene 26: pp. 2804-2808
    139. Faitar, SL, Sossey-Alaoui, K, Ranalli, TA, Cowell, JK (2006) EVI5 protein associates with the INCENP-aurora B kinase-survivin chromosomal passenger complex and is involved in the completion of cytokinesis. Exp Cell Res 312: pp. 2325-2335
    140. Bernis, C, Vigneron, S, Burgess, A, Labbe, J-C, Fesquet, D, Castro, A, Lorca, T (2007) Pin1 stabilizes Emi1 during G2 phase by preventing its association with SCF尾trcp. EMBO Rep 8: pp. 91-98
    141. Heber-Katz, E, Zhang, Y, Bedelbaeva, K, Song, F, Chen, X, Stocum, DL (2013) Cell cycle regulation and regeneration. Curr Topics Microbio Immunol 367: pp. 253-276
    142. Mescher, AL, Tassava, RA (1975) Denervation effects on DNA replication and mitosis during the initiation of limb regeneration in adult newts. Dev Biol 44: pp. 187-197
    143. Hale, JE, Butler, JP, Gelfanova, V, You, JS, Knierman, MD (2004) A simplified procedure for the resuction and alkylation of cysteine residues in proteins prior to proteolytic digestion and mass spectral analysis. Analyt Biochem 333: pp. 174-181
    144. Higgs, RE, Knierman, MD, Gelfanova, V, Butler, JP, Hale, JE (2005) Comprehensive label-free method for the relative quantification of proteins from biological samples. J Proteome Res 4: pp. 1442-1450
    145. Fitzpatrick, DP, You, JS, Bemis, KG, Wery, JP, Ludwig, JR, Wang, M (2007) Searching for potential biomarkers of cisplatin resistance in human ovarian cancer using a label-free LC/MS-based protein quantification method. Proteomics Clin Appl 1: pp. 246-263
    146. Bolstad, BM, Irizarry, RA, Astrand, M, Speed, TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19: pp. 185-193
    147. https://www.google.com/?gws_rd=ssl#q=http://blast.ncbi.nim.nih.gov/blast.cgi
    148. GeneCards http://www.genecards.org
    149. UniProt http://www.uniprot.org/
    150. Eisen, MB, Spellman, PT, Brown, PO, Botstein, D (1998) Cluster analysis and display of genome-wide expression patterna. Proc Natl Acad Aci USA 95: pp. 14863-14868
    151. Saldanha, AJ (2004) Java Treeview-extensible visualization of microarray data. Bioinformatics 20: pp. 3246-3248
    152. Krzywinski, M, Schein, JE, Birol, I, Connors, J, Gascoyne, R, Horman, D, Jones, SJ, Mara, MA (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19: pp. 1639-1645
  • 刊物主题:Developmental Biology; Animal Models; Life Sciences, general;
  • 出版者:BioMed Central
  • ISSN:1471-213X
文摘
Background To gain insight into what differences might restrict the capacity for limb regeneration in Xenopus froglets, we used High Performance Liquid Chromatography (HPLC)/double mass spectrometry to characterize protein expression during fibroblastema formation in the amputated froglet hindlimb, and compared the results to those obtained previously for blastema formation in the axolotl limb. Results Comparison of the Xenopus fibroblastema and axolotl blastema revealed several similarities and significant differences in proteomic profiles. The most significant similarity was the strong parallel down regulation of muscle proteins and enzymes involved in carbohydrate metabolism. Regenerating Xenopus limbs differed significantly from axolotl regenerating limbs in several ways: deficiency in the inositol phosphate/diacylglycerol signaling pathway, down regulation of Wnt signaling, up regulation of extracellular matrix (ECM) proteins and proteins involved in chondrocyte differentiation, lack of expression of a key cell cycle protein, ecotropic viral integration site 5 (EVI5), that blocks mitosis in the axolotl, and the expression of several patterning proteins not seen in the axolotl that may dorsalize the fibroblastema. Conclusions We have characterized global protein expression during fibroblastema formation after amputation of the Xenopus froglet hindlimb and identified several differences that lead to signaling deficiency, failure to retard mitosis, premature chondrocyte differentiation, and failure of dorsoventral axial asymmetry. These differences point to possible interventions to improve blastema formation and pattern formation in the froglet limb.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700