Associated expression of α2,3sialylated type 2 chain structures with lymph node metastasis in distal colorectal cancer
详细信息    查看全文
  • 作者:Takaharu Fukasawa (1)
    Takayuki Asao (1)
    Hayato Yamauchi (1)
    Munenori Ide (2)
    Yuichi Tabe (1)
    Takaaki Fujii (1)
    Satoru Yamaguchi (1)
    Soichi Tsutsumi (1)
    Shin Yazawa (1) (3)
    Hiroyuki Kuwano (1)
  • 关键词:α2 ; 3Sialylation ; Glycoconjugates ; Lectins ; Lymph node metastasis ; Colorectal cancer
  • 刊名:Surgery Today
  • 出版年:2013
  • 出版时间:February 2013
  • 年:2013
  • 卷:43
  • 期:2
  • 页码:155-162
  • 全文大小:378KB
  • 参考文献:1. Fukuda M. Possible roles of tumor-associated carbohydrate antigens. Cancer Res. 1996;56:2237-4.
    2. Hakomori S. Tumor malignancy defined by aberrant glycosylation and sphingo(glyco)lipid metabolism. Cancer Res. 1996;56:5309-8.
    3. Vierbuchen MJ, Fruechtnicht W, Brackrock S, Krause KT, Zienkiewicz TJ. Quantitative lectin-histochemical and immunohistochemical studies on the occurrence of alpha(2,3)- and alpha(2,6)-linked sialic acid residues in colorectal carcinomas relation to clinicopathologic features. Cancer. 1995;76:727-5. CrossRef
    4. Murayama T, Zuber C, Seelentag WK, Li WP, Kemmner W, Heitz PU, et al. Colon carcinoma glycoproteins carrying α2,6-linked sialic acid reactive with / Sambucus nigra agglutinin are not constitutively expressed in normal human colon mucosa and are distinct from sialyl-Tn antigen. Int J Cancer. 1997;70:575-1. CrossRef
    5. Campo E, Condom E, Palacin A, Quesada E, Cardesa A. Lectin binding patterns in normal and neoplastic colonic mucosa. A study of Dolichos biflorus agglutinin, peanut agglutinin, and wheat germ agglutinin. Dis Colon Rectum. 1988;31:892-. CrossRef
    6. Dennis JW, Laferte S, Waghorne C, Breitman ML, Kerbel RS. Beta1-6 branching of Asn-linked oligosaccharides is directly associated with metastasis. Science. 1987;236:582-. CrossRef
    7. Konno A, Hoshino Y, Terashima S, Motoki R, Kawaguchi T. Carbohydrate expression profile of colorectal cancer cells is relevant to metastatic pattern and prognosis. Clin Exp Metastasis. 2002;19:61-0. CrossRef
    8. Ono M, Hakomori S. Glycosylation defining cancer cell motility and invasiveness. Glycoconj J. 2004;20:71-. CrossRef
    9. de Albuquerque Garcia Redondo P, Nakamura CV, de Souza W, Morgado-Diaz JA. Differential expression of sialic acid and / N-acetylgalactosamine residues on the cell surface of intestinal epithelial cells according to normal or metastatic potential. J Histochem Cytochem. 2004;52:629-0.
    10. Yogeeswaran G, Salk PL. Metastatic potential is positively correlated with cell surface sialylation of cultured murine tumor cell lines. Science. 1981;212:1514-. CrossRef
    11. Kannagi R, Izawa M, Koike T, Miyazaki K, Kimura N. Carbohydrate-mediated cell adhesion in cancer metastasis and angiogenesis. Cancer Sci. 2004;95:377-4. CrossRef
    12. Varki A. Sialic acids as ligands in recognition phenomena. FASEB J. 1997;11:248-5.
    13. Varki A. Diversity in the sialic acids. Glycobiology. 1992;2:25-0. CrossRef
    14. Knibbs RN, Goldstein IJ, Ratcliffe RM, Shibuya N. Characterization of the carbohydrate binding specificity of the leukoagglutinating lectin from / Maackia amurensis. Comparison with other sialic acid-specific lectins. J Biol Chem. 1991;266:83-.
    15. Hoff SD, Matsushita Y, Ota DM, Cleary KR, Yamori T, Hakomori S, et al. Increased expression of sialyl-dimeric LeX antigen in liver metastases of human colorectal carcinoma. Cancer Res. 1989;49:6883-.
    16. Dohi T, Nemoto T, Ohta S, Shitara K, Hanai N, Nudelman E, et al. Different binding properties of three monoclonal antibodies to sialyl Le(x) glycolipids in a gastric cancer cell line and normal stomach tissue. Anticancer Res. 1993;13:1277-2.
    17. Tsuboi K, Asao T, Ide M, Hashimoto S, Noguchi K, Kominato Y, et al. α1,2Fucosylation is a superior predictor of postoperative prognosis for colorectal cancer compared with blood group A, B, or sialyl Lewis X antigen generated within colorectal tumor tissues. Ann Surg Oncol. 2007;14:1880-. CrossRef
    18. Nakagoe T, Fukushima K, Nanashima A, Sawai T, Tsuji T, Jibiki M, et al. Expression of Lewisa, sialyl Lewisa, LewisX and sialyl LewisX antigens as prognostic factors in patients with colorectal cancer. Can J Gastroenterol. 2000;14:753-0.
    19. Ono M, Sakamoto M, Ino Y, Moiya Y, Sugihara K, Muto T, et al. Cancer cell morphology at the invasive front and expression of cell adhesion-related carbohydrate in the primary lesion of patients with colorectal carcinoma with liver metastasis. Cancer. 1996;78:1179-6. CrossRef
    20. Doekhie FS, Morreau H, de Bock GH, Speetjens FM, Dekker-Ensink NG, Putter H, et al. Sialyl Lewis X expression and lymphatic microvessel density in primary tumors of node-negative colorectal cancer patients predict disease recurrence. Cancer Microenviron. 2008;1:141-1. CrossRef
    21. Nakamori S, Kameyama M, Imaoka S, Fukukawa H, Ishikawa O, Sasaki Y, et al. Increased expression of sialyl LewisX antigen correlates with poor survival in patients with colorectal carcinoma: clinicopathological and immunohistochemical study. Cancer Res. 1993;53:3632-.
    22. Nakayama T, Watanabe M, Katsumata T, Teramoto T, Kitajima M. Expression of sialyl Lewisa as a new prognostic factor for patients with advanced colorectal carcinoma. Cancer. 1995;75:2051-. CrossRef
    23. Villar Portela S, Vázquez Martín C, Muinelo Romay L, Cuevas E, Gil Martín E, Fernández Briera A. sLea and sLeX expression in colorectal cancer: implications for tumourigenesis and disease prognosis. Histol Histopathol 2011;26:1305-6.
    24. Matsui T, Kojima H, Suzuki H, Hamajima H, Nakazato H, Ito K, et al. Sialyl Lewisa expression as a predictor of the prognosis of colon carcinoma patients in a prospective randomized clinical trial. Jpn J Clin Oncol. 2004;34:588-3. CrossRef
    25. Lis H, Sharon N. Lectins as molecules and as tools. Annu Rev Biochem. 1986;55:35-7. CrossRef
    26. Yazawa S, Nakamura J, Asao T, Nagamachi Y, Sagi M, Matta KL, et al. Aberrant α1?→?fucosyltransferases found in human colorectal carcinoma involved in the accumulation of Leb and Y antigens in colorectal tumors. Jpn J Cancer Res. 1993;84:989-5. CrossRef
    27. Yazawa S, Nishimura T, Ide M, Asao T, Okamura A, Tanaka S, et al. Tumor-related expression of α1,2fucosylated antigens on colorectal carcinoma cells and its suppression by cell-mediated priming using sugar acceptors for α1, 2fucosyltransferase. Glycobiology. 2002;12:545-3. CrossRef
    28. Sun J, Thurin J, Cooper HS, Wang P, Mackiewicz M, Steplewski Z, et al. Elevated expression of H type GDP-L-fucose:beta-D-galactoside α-2-L-fucosyltransferase is associated with human colon adenocarcinoma progression. Proc Natl Acad Sci USA. 1995;92:5724-. CrossRef
    29. Orlow I, Lacombe L, Pellicer I, Rabbani F, Delgado R, Zhang ZF, et al. Genotypic and phenotypic characterization of the histoblood group ABO(H) in primary bladder tumors. Int J Cancer. 1998;75:819-4. CrossRef
    30. Kominato Y, Hata Y, Takizawa H, Tsuchiya T, Tsukada J, Yamamoto F. Expression of human histo-blood group ABO genes is dependent upon DNA methylation of the promoter region. J Biol Chem. 1999;274:37240-0. CrossRef
    31. Gao S, Worm J, Guldberg P, Eiberg H, Krogdahl A, Liu CJ, et al. Genetic and epigenetic alterations of the blood group ABO gene in oral squamous cell carcinoma. Int J Cance. 2004;109:230-. CrossRef
    32. Inagaki Y, Tang W, Guo Q, Kokudo N, Sugawara Y, Karako H, et al. Sialoglycoconjugate expression in primary colorectal cancer and metastatic lymph node tissues. Hepatogastroenterology. 2007;54:53-.
    33. Kawaguchi T, Matsumoto I, Osawa T. Studies on hemagglutinins from / Maackia amurensis seeds. J Biol Chem. 1974;249:2786-2.
    34. Wang WC, Cummings RD. The immobilized leukoagglutinin from the seeds of / Maackia amurensis binds with high affinity to complex-type Asn-linked oligosaccharides containing terminal sialic acid-linked α-2,3 to penultimate galactose residues. J Biol Chem. 1988;263:4576-5.
    35. Sata T, Roth J, Zuber C, Stamm B, Heitz PU. Expression of alpha 2,6-linked sialic acid residues in neoplastic but not in normal human colonic mucosa. A lectin-gold cytochemical study with / Sambucus nigra and / Maackia amurensis lectins. Am J Pathol. 1991;139:1435-8.
    36. Akamatsu S, Yazawa S, Tachikawa T, Furuta T, Okaichi Y, Nakamura J, et al. α2?→?Sialyltransferase associated with the synthesis of CA 19- in colorectal tumors. Cancer. 1996;77:1694-00.
    37. Robbe C, Capon C, Coddeville B, Michalski JC. Structural diversity and specific distribution of O-glycans in normal human mucins along the intestinal tract. Biochem J. 2004;384:307-6. CrossRef
    38. Jacobs LR, Huber PW. Regional distribution and alterations of lectin binding to colorectal mucin in mucosal biopsies from controls and subjects with inflammatory bowel diseases. J Clin Invest. 1985;75:112-. CrossRef
    39. Sobin LH, Gospodarowicz MK, Wittekind C (editors) TNM Classification of malignant tumours. 7th ed. New York: Wiley–Blackwell; 2009.
    40. Tachikawa T, Yazawa S, Asao T, Shin S, Yanaihara N. Novel method for quantifying α(1?→?)-L-fucosyltransferase activity in serum. Clin Chem. 1991;37:2081-.
    41. Macartney JC. Lectin histochemistry of galactose and N-acetyl-galactosamine glycoconjugates in normal gastric mucosa and gastric cancer and the relationship with ABO secretor status. J Pathol. 1986;150:135-4. CrossRef
    42. Stoward PJ, Spicer SS, Miller RL. Histochemical reactivity of peanut lectin-horseradish peroxidase conjugate. J Histochem Cytochem. 1980;28:979-0. CrossRef
    43. Accili D, Gabrielli MG, Menghi G, Materazzi G. Histoenzymological detection of sialic acids in the rodent salivary glands. Histol Histopathol. 1996;11:647-8.
    44. Vázquez-Martín C, Gil-Martín E, Fernández-Briera A. Elevation of ST6Gal I activity in malignant and transitional tissue in human colorectal cancer. Oncology. 2005;69:436-4. CrossRef
    45. Vázquez-Martín C, Cuevas E, Gil-Martín E, Fernández-Briera A. Correlation analysis between tumor-associated antigen sialyl-Tn expression and ST6GalNAc I activity in human colon adenocarcinoma. Oncology. 2004;67:159-5. CrossRef
    46. Petretti T, Kemmner W, Schulze B, Schlag PM. Altered mRNA expression of glycosyltransferases in human colorectal carcinomas and liver metastases. Gut. 2000;46:359-6. CrossRef
    47. Dabelsteen E. Cell surface carbohydrates as prognostic markers in human carcinomas. J Pathol. 1996;179:358-9. CrossRef
    48. Hakomori S. LeX and related structures as adhesion molecules. Histochem J. 1992;24:771-. CrossRef
    49. Ye C, Kiriyama K, Mitsuoka C, Kannagi R, Ito K, Watanabe T, et al. Expression of E-selectin on endothelial cells of small veins in human colorectal cancer. Int J Cancer. 1995;61:455-0. CrossRef
    50. Tomlinson J, Wang JL, Barsky SH, Lee MC, Bischoff J, Nguyen M. Human colon cancer cells express multiple glycoprotein ligands for E-selectin. Int J Oncol. 2000;16:347-3.
    51. Li XW, Ding YQ, Cai JJ, Yang SQ, An LB, Qiao DF. Studies on mechanism of sialy Lewis-X antigen in liver metastases of human colorectal carcinoma. World J Gastroenterol. 2001;7:425-0.
    52. Nakamori S, Kameyama M, Imaoka S, Furukawa H, Ishikawa O, Sasaki Y, et al. Involvement of carbohydrate antigen sialyl Lewis(x) in colorectal cancer metastasis. Dis Colon Rectum. 1997;40:420-1. CrossRef
    53. Yazawa S, Asao T, Izawa H, Miyamoto Y, Matta KL. The presence of CA19-9 in serum and saliva from Lewis blood-group negative patients. Jpn J Cancer Res. 1988;79:538-3. CrossRef
    54. Yazawa S, Madiyalakan R, Izawa H, Asao T, Furukawa K, Matta KL. Cancer-associated elevation of α(1,3)-L-fucosyltransferase activity in human serum. Cancer. 1988;62:516-0. CrossRef
    55. Yazawa S, Nishihara S, Iwasaki H, Asao T, Nagamachi Y, Matta KL, et al. Genetic and enzymatic evidence for Lewis enzyme expression in Lewis-negative cancer patients. Cancer Res. 1955;55:1473-.
  • 作者单位:Takaharu Fukasawa (1)
    Takayuki Asao (1)
    Hayato Yamauchi (1)
    Munenori Ide (2)
    Yuichi Tabe (1)
    Takaaki Fujii (1)
    Satoru Yamaguchi (1)
    Soichi Tsutsumi (1)
    Shin Yazawa (1) (3)
    Hiroyuki Kuwano (1)

    1. Department of General Surgical Science, Gunma University Graduate School of Medicine, Showa-machi, Maebashi, Gunma, 371-8511, Japan
    2. Department of Diagnostic Pathology, Gunma University Graduate School of Medicine, Maebashi, Gunma, 371-8511, Japan
    3. Tokushima Research Institute, Otsuka Pharmaceutical Co. Ltd., Tokushima, Tokushima, 771-0192, Japan
  • ISSN:1436-2813
文摘
Purpose One of the typical modifications on the surface of cancer cells is sialylation of terminal carbohydrates. The expression of several types of sialylation of glycoconjugates was investigated in colorectal cancer. Methods The cancer tissue specimens obtained from 65 colorectal cancer patients were stained with sialic acid-binding lectins from Maackia amurensis (MAM), Sambucus sieboldiana (SSA), Maackia amurensis agglutinin (MAA) and monoclonal antibodies, and compared with their clinicopathological features. Results Cancer tissue specimens from 44.6% of patients had positive staining with MAM, which recognized α2,3sialylated type 2 chain (NeuAcα2,3Galβ1,4GlcNAcβR) structures, but normal colorectal mucosa showed only weak staining with MAM was observed. More lymph node metastases and lymphatic invasion were seen in patients with positive staining with MAM (P?<?0.01), while not with other lectins or antibodies that recognized sialylated glycoconjugates or sialyl Lewis-related antigens. The five-year survival rate of patients with MAM-positive staining was significantly lower than that with MAM-negative staining when including T0- cases, but there was no difference in cases with T2-. There was no difference in the patients-survival rates when the tissues were stained with MAA, SSA or PNA lectins. Conclusion α2,3Sialylated type 2 chain structures were predominantly expressed in colorectal tissues associated with the malignant transformation, in particular, with lymphatic spread of distal colorectal adenocarcinomas.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700