Histamine induces the production of matrix metalloproteinase-9 in human astrocytic cultures via H1-receptor subtype
详细信息    查看全文
  • 作者:Aarti Patel ; Vishnu Vasanthan ; Wen Fu ; Richard P. Fahlman…
  • 关键词:Histamine ; Matrix metalloproteinase ; 9 ; Astrocytes ; Soluble oligomeric amyloid beta peptide
  • 刊名:Brain Structure and Function
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:221
  • 期:4
  • 页码:1845-1860
  • 全文大小:1,427 KB
  • 参考文献:Acharjee S, Zhu Y, Maingat F, Pardo C, Ballanyi K, Hollenberg MD, Power C (2011) Proteinase-activated receptor-1 mediates dorsal root ganglion neuronal degeneration in HIV/AIDS. Brain 134:3209–3221. doi:10.​1093/​brain/​awr242 CrossRef PubMed PubMedCentral
    Akiyama H et al (2000) Inflammation and Alzheimer’s disease. Neurobiol Aging 21:383–421CrossRef PubMed PubMedCentral
    Arias-Montano JA, Berger V, Young JM (1994) Calcium-dependence of histamine- and carbachol-induced inositol phosphate formation in human U373 MG astrocytoma cells: comparison with HeLa cells and brain slices. Br J Pharmacol 111:598–608CrossRef PubMed PubMedCentral
    Asahina M, Yoshiyama Y, Hattori T (2001) Expression of matrix metalloproteinase-9 and urinary-type plasminogen activator in Alzheimer’s disease brain. Clin Neuropathol 20:60–63PubMed
    Asano K, Kanai KI, Suzaki H (2004) Suppressive activity of fexofenadine hydrochloride on metalloproteinase production from nasal fibroblasts in vitro. Clin Exp Allergy 34:1890–1898. doi:10.​1111/​j.​1365-2222.​2004.​02127.​x CrossRef PubMed
    Backstrom JR, Lim GP, Cullen MJ, Tokes ZA (1996) Matrix metalloproteinase-9 (MMP-9) is synthesized in neurons of the human hippocampus and is capable of degrading the amyloid-beta peptide (1-40). J Neurosci 16:7910–7919PubMed
    Bakker RA, Timmerman H, Leurs R (2002) Histamine receptors: specific ligands, receptor biochemistry, and signal transduction. Clin Allergy Immunol 17:27–64PubMed
    Berman NE et al (1999) Microglial activation and neurological symptoms in the SIV model of NeuroAIDS: association of MHC-II and MMP-9 expression with behavioral deficits and evoked potential changes. Neurobiol Dis 6:486–498. doi:10.​1006/​nbdi.​1999.​0261 CrossRef PubMed
    Breunig E, Michel K, Zeller F, Seidl S, Weyhern CW, Schemann M (2007) Histamine excites neurones in the human submucous plexus through activation of H1, H2, H3 and H4 receptors. J Physiol 583:731–742. doi:10.​1113/​jphysiol.​2007.​139352 CrossRef PubMed PubMedCentral
    Bruno MA, Leon WC, Fragoso G, Mushynski WE, Almazan G, Cuello AC (2009) Amyloid beta-induced nerve growth factor dysmetabolism in Alzheimer disease. J Neuropathol Exp Neurol 68:857–869. doi:10.​1097/​NEN.​0b013e3181aed9e6​pan> CrossRef PubMed
    Bu X, Zhao C, Dai X (2011) Involvement of COX-2/PGE(2) pathway in the upregulation of MMP-9 expression in pancreatic cancer. Gastroenterol Res Pract 2011:214269. doi:10.​1155/​2011/​214269 CrossRef PubMed PubMedCentral
    Carman-Krzan M, Vige X, Wise BC (1991) Regulation by interleukin-1 of nerve growth factor secretion and nerve growth factor mRNA expression in rat primary astroglial cultures. J Neurochem 56:636–643CrossRef PubMed
    Cheng CY, Kuo CT, Lin CC, Hsieh HL, Yang CM (2010) IL-1beta induces expression of matrix metalloproteinase-9 and cell migration via a c-Src-dependent, growth factor receptor transactivation in A549 cells. Br J Pharmacol 160:1595–1610. doi:10.​1111/​j.​1476-5381.​2010.​00858.​x CrossRef PubMed PubMedCentral
    Dahlgren KN, Manelli AM, Stine WB Jr, Baker LK, Krafft GA, LaDu MJ (2002) Oligomeric and fibrillar species of amyloid-beta peptides differentially affect neuronal viability. J Biol Chem 277:32046–32053. doi:10.​1074/​jbc.​M201750200 CrossRef PubMed
    Deb S, Gottschall PE (1996) Increased production of matrix metalloproteinases in enriched astrocyte and mixed hippocampal cultures treated with beta-amyloid peptides. J Neurochem 66:1641–1647CrossRef PubMed
    Ding X, MacTavish D, Kar S, Jhamandas JH (2006) Galanin attenuates beta-amyloid (Abeta) toxicity in rat cholinergic basal forebrain neurons. Neurobiol Dis 21:413–420. doi:10.​1016/​j.​nbd.​2005.​08.​016 CrossRef PubMed
    Doyle JL, Haas TL (2009) Differential role of beta-catenin in VEGF and histamine-induced MMP-2 production in microvascular endothelial cells. J Cell Biochem 107:272–283. doi:10.​1002/​jcb.​22123 CrossRef PubMed
    Gschwandtner M, Purwar R, Wittmann M, Baumer W, Kietzmann M, Werfel T, Gutzmer R (2008) Histamine upregulates keratinocyte MMP-9 production via the histamine H1 receptor. J Invest Dermatol 128:2783–2791. doi:10.​1038/​jid.​2008.​153 CrossRef PubMed
    Haas H, Panula P (2003) The role of histamine and the tuberomamillary nucleus in the nervous system. Nat Rev Neurosci 4:121–130. doi:10.​1038/​nrn1034nrn1034 CrossRef PubMed
    Hao F, Tan M, Xu X, Cui MZ (2008) Histamine induces Egr-1 expression in human aortic endothelial cells via the H1 receptor-mediated protein kinase Cdelta-dependent ERK activation pathway. J Biol Chem 283:26928–26936. doi:10.​1074/​jbc.​M803071200 CrossRef PubMed PubMedCentral
    Hu WW, Chen Z (2012) Role of histamine and its receptors in cerebral ischemia. ACS Chem Neurosci 3:238–247. doi:10.​1021/​cn200126p CrossRef PubMed PubMedCentral
    Inagaki N, Fukui H, Taguchi Y, Wang NP, Yamatodani A, Wada H (1989) Characterization of histamine H1-receptors on astrocytes in primary culture: [3H]mepyramine binding studies. Eur J Pharmacol 173:43–51. doi:10.​1016/​0014-2999(89)90007-1 CrossRef PubMed
    Jhamandas JH, MacTavish D (2004) Antagonist of the amylin receptor blocks beta-amyloid toxicity in rat cholinergic basal forebrain neurons. J Neurosci 24:5579–5584. doi:10.​1523/​JNEUROSCI.​1051-04.​2004 CrossRef PubMed
    Jones GJ et al (2007) HIV-1 Vpr causes neuronal apoptosis and in vivo neurodegeneration. J Neurosci 27:3703–3711. doi:10.​1523/​JNEUROSCI.​5522-06.​2007 CrossRef PubMed
    Juric DM, Mele T, Carman-Krzan M (2011) Involvement of histaminergic receptor mechanisms in the stimulation of NT-3 synthesis in astrocytes. Neuropharmacology 60:1309–1317. doi:10.​1016/​j.​neuropharm.​2011.​01.​019 CrossRef PubMed
    Koistinaho M et al (2004) Apolipoprotein E promotes astrocyte colocalization and degradation of deposited amyloid-beta peptides. Nat Med 10:719–726. doi:10.​1038/​nm1058nm1058 CrossRef PubMed
    Komatsu K, Nakanishi Y, Nemoto N, Hori T, Sawada T, Kobayashi M (2004) Expression and quantitative analysis of matrix metalloproteinase-2 and -9 in human gliomas. Brain Tumor Pathol 21:105–112CrossRef PubMed
    Lacor PN et al (2007) Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. J Neurosci 27:796–807. doi:10.​1523/​JNEUROSCI.​3501-06.​2007 CrossRef PubMed
    Leissring MA (2006) Proteolytic degradation of the amyloid beta-protein: the forgotten side of Alzheimer’s disease. Curr Alzheimer Res 3:431–435CrossRef PubMed
    Li SF, Wu MN, Wang XH, Yuan L, Yang D, Qi JS (2011) Requirement of alpha7 nicotinic acetylcholine receptors for amyloid beta protein-induced depression of hippocampal long-term potentiation in CA1 region of rats in vivo. Synapse 65:1136–1143. doi:10.​1002/​syn.​20951 CrossRef PubMed
    Lipnik-Stanglj M, Carman-Krzan M (2000) The effects of histamine and interleukin-6 on NGF release from cortical astrocytes in primary culture. Pflugers Arch 440:R99–R100PubMed
    Lorenzl S, Buerger K, Hampel H, Beal MF (2008) Profiles of matrix metalloproteinases and their inhibitors in plasma of patients with dementia. Int Psychogeriatr 20:67–76. doi:10.​1017/​S104161020700579​0 CrossRef PubMed
    Maier CM, Hsieh L, Yu F, Bracci P, Chan PH (2004) Matrix metalloproteinase-9 and myeloperoxidase expression: quantitative analysis by antigen immunohistochemistry in a model of transient focal cerebral ischemia. Stroke 35:1169–1174. doi:10.​1161/​01.​STR.​0000125861.​55804.​f2 CrossRef PubMed
    Matsubara M, Tamura T, Ohmori K, Hasegawa K (2005) Histamine H1 receptor antagonist blocks histamine-induced proinflammatory cytokine production through inhibition of Ca2+-dependent protein kinase C, Raf/MEK/ERK and IKK/I kappa B/NF-kappa B signal cascades. Biochem Pharmacol 69:433–449. doi:10.​1016/​j.​bcp.​2004.​10.​006 CrossRef PubMed
    Miners JS, Baig S, Palmer J, Palmer LE, Kehoe PG, Love S (2008) Abeta-degrading enzymes in Alzheimer’s disease. Brain Pathol 18:240–252. doi:10.​1111/​j.​1750-3639.​2008.​00132.​x CrossRef PubMed
    Nagase H, Woessner JF Jr (1999) Matrix metalloproteinases. J Biol Chem 274:21491–21494CrossRef PubMed
    Nagele RG, Wegiel J, Venkataraman V, Imaki H, Wang KC (2004) Contribution of glial cells to the development of amyloid plaques in Alzheimer’s disease. Neurobiol Aging 25:663–674. doi:10.​1016/​j.​neurobiolaging.​2004.​01.​007 CrossRef PubMed
    Page-McCaw A, Ewald AJ, Werb Z (2007) Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 8:221–233. doi:10.​1038/​nrm2125 CrossRef PubMed PubMedCentral
    Panula P, Rinne J, Kuokkanen K, Eriksson KS, Sallmen T, Kalimo H, Relja M (1998) Neuronal histamine deficit in Alzheimer’s disease. Neuroscience 82:993–997CrossRef PubMed
    Rosenberg GA (2009) Matrix metalloproteinases and their multiple roles in neurodegenerative diseases. Lancet Neurol 8:205–216. doi:10.​1016/​S1474-4422(09)70016-X CrossRef PubMed
    Ruangkittisakul A, Schwarzacher SW, Secchia L, Poon BY, Ma Y, Funk GD, Ballanyi K (2006) High sensitivity to neuromodulator-activated signaling pathways at physiological [K+] of confocally imaged respiratory center neurons in on-line-calibrated newborn rat brainstem slices. J Neurosci 26:11870–11880. doi:10.​1523/​JNEUROSCI.​3357-06.​2006 CrossRef PubMed
    Saido TC (1998) Alzheimer’s disease as proteolytic disorders: anabolism and catabolism of beta-amyloid. Neurobiol Aging 19:S69–S75CrossRef PubMed
    Saito T, Takaki Y, Iwata N, Trojanowski J, Saido TC (2003) Alzheimer’s disease, neuropeptides, neuropeptidase, and amyloid-beta peptide metabolism. Sci Aging Knowledge Environ 2003:PE1CrossRef PubMed
    Selkoe DJ (2000) Toward a comprehensive theory for Alzheimer’s disease. Hypothesis: Alzheimer’s disease is caused by the cerebral accumulation and cytotoxicity of amyloid beta-protein. Ann NY Acad Sci 924:17–25CrossRef PubMed
    Selkoe DJ (2002) Alzheimer’s disease is a synaptic failure. Science 298:789–791. doi:10.​1126/​science.​1074069 CrossRef PubMed
    Stine WB Jr, Dahlgren KN, Krafft GA, LaDu MJ (2003) In vitro characterization of conditions for amyloid-beta peptide oligomerization and fibrillogenesis. J Biol Chem 278:11612–11622. doi:10.​1074/​jbc.​M210207200 CrossRef PubMed
    Tetlow LC, Woolley DE (2002) Histamine stimulates matrix metalloproteinase-3 and -13 production by human articular chondrocytes in vitro. Ann Rheum Dis 61:737–740CrossRef PubMed PubMedCentral
    Turner AJ, Fisk L, Nalivaeva NN (2004) Targeting amyloid-degrading enzymes as therapeutic strategies in neurodegeneration. Ann NY Acad Sci 1035:1–20. doi:10.​1196/​annals.​1332.​001 CrossRef PubMed
    Vehmas AK, Kawas CH, Stewart WF, Troncoso JC (2003) Immune reactive cells in senile plaques and cognitive decline in Alzheimer’s disease. Neurobiol Aging 24:321–331CrossRef PubMed
    Wegiel J, Wang KC, Tarnawski M, Lach B (2000) Microglia cells are the driving force in fibrillar plaque formation, whereas astrocytes are a leading factor in plague degradation. Acta Neuropathol 100:356–364CrossRef PubMed
    Wyss-Coray T, Mucke L (2002) Inflammation in neurodegenerative disease—a double-edged sword. Neuron 35:419–432CrossRef PubMed
    Wyss-Coray T et al (2003) Adult mouse astrocytes degrade amyloid-beta in vitro and in situ. Nat Med 9:453–457. doi:10.​1038/​nm838 CrossRef PubMed
    Yan P et al (2006) Matrix metalloproteinase-9 degrades amyloid-beta fibrils in vitro and compact plaques in situ. J Biol Chem 281:24566–24574. doi:10.​1074/​jbc.​M602440200 CrossRef PubMed
    Yang BC, Chen RF, Chio CC, Chang WC, Lin MT, Lin SJ (1998) Effects of insulin on protein phosphorylation and protein kinase C activity in human malignant gliomas. Proc Natl Sci Counc Repub China B 22:22–30PubMed
    Yin KJ et al (2006) Matrix metalloproteinases expressed by astrocytes mediate extracellular amyloid-beta peptide catabolism. J Neurosci 26:10939–10948. doi:10.​1523/​JNEUROSCI.​2085-06.​2006 CrossRef PubMed
    Yoo HG et al (2002) IL-1beta induces MMP-9 via reactive oxygen species and NF-kappaB in murine macrophage RAW 264.7 cells. Biochem Biophys Res Commun 298:251–256CrossRef PubMed
  • 作者单位:Aarti Patel (1)
    Vishnu Vasanthan (1)
    Wen Fu (1)
    Richard P. Fahlman (2)
    David MacTavish (1)
    Jack H. Jhamandas (1)

    1. Division of Neurology, Department of Medicine, Institute of Neuroscience and Mental Health, 530 Heritage Medical Research Centre, University of Alberta, Edmonton, AB, T6G 2S2, Canada
    2. Department of Biochemistry, University of Alberta, Edmonton, AB, T6G 2S2, Canada
  • 刊物主题:Neurosciences; Cell Biology; Neurology;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1863-2661
  • 卷排序:221
文摘
Accumulation of β-amyloid (Aβ) protein within the brain is a neuropathological hallmark of Alzheimer’s disease (AD). One strategy to facilitate Aβ clearance from the brain is to promote Aβ catabolism. Matrix metalloproteinase-9 (MMP-9), a member of the family of Zn+2-containing endoproteases, known to be expressed and secreted by astrocytes, is capable of degrading Aβ. Histamine, a major aminergic brain neurotransmitter, stimulates the production of MMP-9 in keratinocytes through the histamine H1 receptor (H1R). In the present study, we show that histamine evokes a concentration- and calcium-dependent release of MMP-9 from human astrocytic U373 cells and primary cultures of human and rat astrocytes through the H1R subtype. Activation of H1R on astrocytes elevated intracellular levels of Ca2+ that was accompanied by time-dependent increases in MAP kinase p44/p42 and PKC. In-cell western blots revealed dose-dependent increases in both enzymes, confirming involvement of these signal transduction pathways. We next investigated the extent of recombinant human MMP-9 (rhMMP-9) proteolytic activity on soluble oligomeric Aβ (soAβ). Mass spectrometry demonstrated time-dependent cleavage of soAβ (20 μM), but not another amyloidogenic protein amylin, upon incubation with rhMMP-9 (100 nM) at 1, 4 and 17 h. Furthermore, Western blots showed a shift in soAβ equilibrium toward lower order, less toxic monomeric species. In conclusion, both MAPK p44/p42 and PKC pathways appear to be involved in histamine-upregulated MMP-9 release via H1Rs in astrocytes. Furthermore, MMP-9 appears to cleave soAβ into less toxic monomeric species. Given the key role of histamine in MMP-9 release, this neurotransmitter may serve as a potential therapeutic target for AD. Keywords Histamine Matrix metalloproteinase-9 Astrocytes Soluble oligomeric amyloid beta peptide

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700