Engineering properties and microstructural characteristics of foundation silt stabilized by lignin-based industrial by-product
详细信息    查看全文
  • 作者:Tao Zhang ; Guojun Cai ; Songyu Liu ; Anand J. Puppala
  • 关键词:silt ; lignin ; strength ; microstructure ; pore ; size distribution
  • 刊名:KSCE Journal of Civil Engineering
  • 出版年:2016
  • 出版时间:November 2016
  • 年:2016
  • 卷:20
  • 期:7
  • 页码:2725-2736
  • 全文大小:1,479 KB
  • 刊物类别:Engineering
  • 刊物主题:Civil Engineering
    Industrial Pollution Prevention
    Automotive and Aerospace Engineering and Traffic
    Geotechnical Engineering
  • 出版者:Korean Society of Civil Engineers
  • ISSN:1976-3808
  • 卷排序:20
文摘
This paper presents details of a study that deals with determination of engineering properties and microstructural characteristics of a foundation soil (silt) sedimented in Jiangsu Province of China when it is stabilized by lignin-based industrial by-product. A series of laboratory tests were carried out with respect to evaluate the effect of lignin content and curing time on the overall soil properties including Atterberg limits, pH, unconfined compressive strength, stress-strain characteristics, secant modulus, and California bearing ratio. In addition, scanning electron microscopy, X-ray diffraction, and mercury intrusion porosimetry studies were conducted to understand the microstructural characteristics and stabilization mechanism of the stabilized silt. The results reveal that lignin has a great potential to improve engineering properties of silt and shows a promising prospect as a new environmentally friendly soil stabilizer. Curing time and lignin content have significant influence on the basic engineering properties and microstructural characteristics of the lignin stabilized silt. The optimum content of lignin for foundation silt in Jiangsu Province of China is approximately 12%. The precipitated cementing material is formed after stabilization of lignin with a period of curing. The stabilized silt switches over its response from a brittle to ductile material in the presence of lignin. Peak analysis results of the pore-size distribution curves demonstrates that the lignin stabilized silt exhibits bimodal behavior when the lignin content less than 8%, whereas it displays unimodal type when the lignin content is more than or equal to 8%. These observations provide enhanced understanding of lignin-based industrial by-product as a soil stabilizer at the foundation construction.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700