Effect of Gas Composition on Nitriding and Wear Behavior of Nitrided Titanium Alloy Ti-15V-3Cr-3Al-3Sn
详细信息    查看全文
  • 作者:C. Anandan (1)
    P. Dilli Babu (1)
    L. Mohan (1)
  • 关键词:gas dilution ; hardness ; plasma nitriding ; Ti ; 15 ; 3 ; titanium alloy ; wear ; XPS
  • 刊名:Journal of Materials Engineering and Performance
  • 出版年:2013
  • 出版时间:September 2013
  • 年:2013
  • 卷:22
  • 期:9
  • 页码:2623-2633
  • 全文大小:1308KB
  • 参考文献:1. R. Boyer, G. Welsch, and E.W. Collings, / Materials Properties Handbook: Titanium Alloys, ASM International, Materials Park, 2003
    2. C. Leyens and M. Peters, / Titanium and Titanium Alloys: Fundamentals and Applications, Wiley-VCH, Germany, 2003 p://dx.doi.org/10.1002/3527602119">CrossRef
    3. K.G. Budinski, Tribological Properties of Titanium Alloys, / Wear, 1992, plus-plus">151, p 203-17 p://dx.doi.org/10.1016/0043-1648(91)90249-T">CrossRef
    4. S.M. Johns, T. Bell, M. Samandi, and G.A. Collins, Wear Resistance of Plasma Immersion Ion Implanted Ti6A14V, / Surf. Coat. Technol., 1996, plus-plus">85, p 7-4 p://dx.doi.org/10.1016/0257-8972(96)02884-8">CrossRef
    5. H. Dong and T. Bell, Designer Surfaces for Titanium Components, / Ind. Lubr. Tribol., 1998, plus-plus">50(6), p 282-89 p://dx.doi.org/10.1108/00368799810245891">CrossRef
    6. H. Dong and T. Bell, Ti-2003 Science and Technology, / Proceedings of the 10th World Conference on Titanium: Volume-II, G. Lutjering and J. Albrecht, Eds., Wiley-VCH, Germany, 2004
    7. X. Liu, P.K. Chu, and C. Ding, Surface Modification of Titanium, Titanium Alloys, and Related Materials for Biomedical Applications, / Mater. Sci. Eng. R, 2004, plus-plus">47, p 49-21 p://dx.doi.org/10.1016/j.mser.2004.11.001">CrossRef
    8. X. Qiu, J.R. Conrad, R.A. Dodd, and F.J. Worzala, Plasma Source Nitrogen Ion Implantation of Ti-6Al-4V, / Metall. Trans. A, 1990, plus-plus">21A, p 1663-667
    9. B.Y. Tang, P.K. Chu, S.Y. Wang, K.W. Chow, and X.F. Wang, Methane and Nitrogen Plasma Immersion Ion Implantation of Titanium Metal, / Surf. Coat. Technol., 1998, plus-plus">103-104, p 248-51 p://dx.doi.org/10.1016/S0257-8972(98)00403-4">CrossRef
    10. S.Y. Wang, P.K. Chu, B.Y. Tang, X.C. Zeng, Y.B. Chen, and X.F. Wang, Radio Frequency Plasma Nitriding and Nitrogen Plasma Immersion Ion Implantation of Ti6Al4V, / Surf. Coat. Technol., 1997, plus-plus">93, p 309-13 p://dx.doi.org/10.1016/S0257-8972(97)00066-2">CrossRef
    11. E.S. Metin and O.T. Inal, Microstructure and Microhardness Evaluations in Ion Nitrided Titanium, / Mater. Sci. Eng. A, 1991, plus-plus">145, p 65-7 p://dx.doi.org/10.1016/0921-5093(91)90296-Y">CrossRef
    12. C. Lugmair, R. Kullmer, A. Gebeshuber, C. Mitterer, M. Stoiber, H. Patrovsky, and M. Adley, / Ti-2003 Science and Technology, Proceedings of the 10 p class="a-plus-plus"> / th p> / world conference on Titanium: Volume-II, G. Lutjering and J. Albrecht, Eds., Wiley-VCH, Germany, 2004
    13. U. Huchel and S. Stramke, / Ti-2003 Science and Technology, Proceedings of the 10th world conference on Titanium: Volume-II, G. Lutjering and J. Albrecht, Eds., Wiley-VCH, Germany, 2004
    14. K.N. Strafford and J.M. Towell, The Interaction of Titanium and Titanium Alloys with Nitrogen at Elevated Temperatures. I. The Kinetics and Mechanism of the Titanium-Nitrogen Reaction, / Oxid. Met., 1976, plus-plus">10, p 41-7 p://dx.doi.org/10.1007/BF00611698">CrossRef
    15. K.N. Strafford and J.M. Towell, The Interaction of Titanium and Titanium Alloys with Nitrogen at Elevated Temperatures. II. The Nitridation Behaviour of Alloys Containing 5?wt.% Percent of Aluminium and Chromium, / Oxid. Met., 1976, plus-plus">10, p 69-4 p://dx.doi.org/10.1007/BF00611699">CrossRef
    16. E. Metin and O.T. Inal, Kinetics of Layer Growth and Multiphase Diffusion in Ion Nitrided Titanium, / Metall. Trans. A, 1989, plus-plus">20A, p 1819-832
    17. N.R. McDonald and G.R. Wallwork, The Reaction of Nitrogen with Titanium Between 800 and 1200°C, / Oxid. Met., 1970, plus-plus">2-3, p 263-83 p://dx.doi.org/10.1007/BF00614621">CrossRef
    18. A. Zhecheva, W. Sha, S. Malinov, and A. Long, Enhancing the Microstructure and Properties of Titanium Alloys Through Nitriding and Other Surface Engineering Methods, / Surf. Coat. Technol., 2005, plus-plus">200, p 2192-220 p://dx.doi.org/10.1016/j.surfcoat.2004.07.115">CrossRef
    19. A. Zhecheva, S. Malinov, and W. Sha, Titanium Alloys After Surface Gas Nitriding, / Surf. Coat. Technol., 2006, plus-plus">201, p 247-467 p://dx.doi.org/10.1016/j.surfcoat.2006.04.019">CrossRef
    20. W. Sha and S. Malinov, / Titanium Alloys: Modelling of Microstructure, Properties and Applications, Woodhead Publishing Ltd., Cambridge, 2009 p://dx.doi.org/10.1533/9781845695866">CrossRef
    21. Prateek Kumar, P. Dilli Babu, L. Mohan, C. Anandan, and V.K. William Grips, Wear and Corrosion Behavior of Zr-Doped DLC on Ti-13Zr-13Nb Biomedical Alloy, / J. Mater. Eng. Perform., 2012, doi: pan class="a-plus-plus non-url-ref">10.1007/s11665-012-0230-3
    22. S.L.R. da Silva, L.O. Kerber, L. Amaral, and C.A. dos Santos, X-Ray Diffraction Measurements of Plasma Nitrided Ti6Al4V, / Surf. Coat. Technol., 1999, plus-plus">116-119, p 342-46 p://dx.doi.org/10.1016/S0257-8972(99)00204-2">CrossRef
    23. F.M. El-Hossary, N.Z. Negm, S.M. Khalil, and M. Raaif, Surface Modification of Titanium by Radio Frequency Plasma Nitriding, / Thin Solid films, 2006, plus-plus">497, p 196-02 p://dx.doi.org/10.1016/j.tsf.2005.09.193">CrossRef
    24. M.A.Z. Vasconcellos, R. Hinrichs, C.S. Javorsky, G. Giuriatti, and J.A.T. Borges da Costa, Micro-Raman Characterization of Plasma Nitrided Ti6Al4V-ELI, / Surf. Coat. Technol., 2007, plus-plus">202, p 275-79 p://dx.doi.org/10.1016/j.surfcoat.2007.05.038">CrossRef
    25. C.P. Constable, J. Yarwood, and W.D. Munz, Raman Microscopic Studies of PVD Hard Coatings, / Surf. Coat. Technol., 1999, plus-plus">116-119, p 155-59 p://dx.doi.org/10.1016/S0257-8972(99)00072-9">CrossRef
    26. R. Chowdhury, R.D. Vispute, K. Jagannadham, and J. Narayan, Characteristics of Titanium Nitride Films Grown by Pulsed Laser Deposition, / J. Mater. Res, 1996, plus-plus">11(6), p 1458 p://dx.doi.org/10.1557/JMR.1996.0182">CrossRef
    27. Y.H. Cheng, B.K. Tay, S.P. Lau, H. Kupfer, and F. Richter, Substrate Bias Dependence of Raman Spectra for TiN Films Deposited by Filtered Cathodic Vacuum Arc, / J Appl. Phys., 2002, plus-plus">92(4), p 1845 p://dx.doi.org/10.1063/1.1491588">CrossRef
    28. N.C. Saha and H.G. Tompkins, Titanium Nitride Oxidation Chemistry: An X-Ray Photoelectron Spectroscopy Study, / J. Appl. Phys., 1992, plus-plus">72, p 3072 p://dx.doi.org/10.1063/1.351465">CrossRef
    29. A. Gicquel, N. Laidani, P. Saillard, and J. Amouroux, Plasma and Nitrides: Application to the Nitriding of Titanium, / Pure Appl. Chem., 1990, plus-plus">62-69, p 1743-750 p://dx.doi.org/10.1351/pac199062091743">CrossRef
    30. E. Galvanetto, F.P. Galliano, F. Borgioli, U. Bardi, and A. Lavacchi, XRD and XPS Study on Reactive Plasma Sprayed Ti-Ti Nitride Coatings, / Thin Solid Films, 2001, plus-plus">384, p 223-29 p://dx.doi.org/10.1016/S0040-6090(00)01871-X">CrossRef
  • 作者单位:C. Anandan (1)
    P. Dilli Babu (1)
    L. Mohan (1)

    1. Surface Engineering Division, CSIR—National Aerospace Laboratories, P.O. Box 1779, Old Airport Road, Bangalore, 560 017, Karnataka, India
文摘
Titanium alloy, Ti-15V-3Cr-3Al-3Sn was nitrided at different temperatures with low pressure plasma with 100% nitrogen, and nitrogen diluted with hydrogen and argon. The nitrided layers were characterized for hardness, structure, and composition. Nitrided samples show weight gain that depended on temperature and duration of nitriding. EDS results show that intake of nitrogen is significant at temperatures above 750?°C. Hydrogen dilution increases intake of nitrogen. Samples nitrided with hydrogen dilution have lower surface roughness and higher nitrogen concentration. Depth profiling by XPS shows the formation of nitride in the near-surface region and also that nitrogen concentration in the interior of the nitrided layers is higher at higher temperatures. Micro Raman shows that formation of nitride takes place at higher temperatures. XRD shows that the nitrided layers consist predominantly of alpha Ti and Ti2N. This is reflected in the hardness increase and hardness profile in the nitrided samples. The low intake of nitrogen by the alloy is attributed to the low solubility of nitrogen in beta alloy and low diffusion coefficient of nitrogen. Reciprocating wear studies showed a lower coefficient of friction and lower wear loss for nitrided samples compared to that of substrate.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700