Influence of electrode size and geometry in electro-discharge drilling of Inconel 718
详细信息    查看全文
文摘
Electro-discharge machining (EDM) of thin deep features widens processing opportunities of difficult-to-cut materials, such as Ni-based alloys, towards attractive industrial applications. Conversely, the complex interaction between electrical, thermal, and chemical phenomena in EDM thwarts process modeling and prediction. As a matter of fact, recent experimental discoveries encourage setting forth a new theory of discharge ignition in the gap, based on the role of debris, which lays foundations for a recursive mathematical model showing a chaotic evolution. The paper reports on electro-discharge drilling of small deep holes in Inconel 718. Process performances are measured with varying electrode size and geometry, attesting a pivotal effect of gap pollution on productivity and on the onset of a secondary detrimental removal of material by intergranular corrosion. All findings support the emerging model for discharge ignition via debris bridges, and, most notably, debris chains are documented for the first time in the field of metals, second only to a previous case for a ceramic composite. On the whole, the paper provides conclusive validation of the role of debris in the ignition of discharges.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700