Deep brain stimulation in Parkinson’s disease: motor effects relative to the MRI-defined STN
详细信息    查看全文
  • 作者:Juergen Ralf Schlaier (1)
    Christine Hanson (1)
    Annette Janzen (2)
    Claudia Fellner (3)
    Andreas Hochreiter (1)
    Martin Proescholdt (1)
    Alexander Brawanski (1)
    Max Lange (1)
  • 关键词:DBS ; Parkinson ; MER ; MRI ; Targeting ; STN
  • 刊名:Neurosurgical Review
  • 出版年:2014
  • 出版时间:July 2014
  • 年:2014
  • 卷:37
  • 期:3
  • 页码:461-471
  • 全文大小:
  • 参考文献:1. Acar F, Miller JP, Berk MC, Anderson G, Burchiel KJ (2007) Safety of anterior commissure-posterior commissure-based target calculation of the subthalamic nucleus in functional stereotactic procedures. Stereotact Funct Neurosurg 85(6):287-91 CrossRef
    2. Bejjani BP, Dormont D, Pidoux B, Yelnik J, Damier P, Arnulf I, Bonnet AM, Marsault C, Agid Y, Philippon J, Cornu P (2000) Bilateral subthalamic stimulation for Parkinson’s disease by using three-dimensional stereotactic magnetic resonance imaging and electrophysiological guidance. J Neurosurg 92(4):615-25 CrossRef
    3. Benabid AL, Koudsie A, Fraix V, Benazzouz A, Chabardes S, LeBas JF, Polak P (2001) High-frequency stimulation of the subthalamic nucleus in advanced Parkinson’s disease: an 8-year experience. J Neurosurg 94:376A
    4. Benabid AL, Krack PP, Benazzouz A, Limousin P, Koudsie A, Pollak P (2000) Deep brain stimulation of the subthalamic nucleus for Parkinson’s disease: methodologic aspects and clinical criteria. Neurology 55(12 Suppl 6):S40–S44
    5. Binder DK, Rau GM, Starr PA (2005) Risk factors for hemorrhage during microelectrode-guided deep brain stimulator implantation for movement disorders. Neurosurgery 56(4):722-32, discussion 722-32 CrossRef
    6. Butson CR, Cooper SE, Henderson JM, McIntyre CC (2007) Patient-specific analysis of the volume of tissue activated during deep brain stimulation. Neuroimage 34(2):661-70. doi:10.1016/j.neuroimage.2006.09.034 CrossRef
    7. Caire F, Ouchchane L, Coste J, Gabrillargues J, Derost P, Ulla M, Durif F, Lemaire JJ (2009) Subthalamic nucleus location: relationships between stereotactic AC-PC-based diagrams and MRI anatomy-based contours. Stereotact Funct Neurosurg 87(6):337-47 CrossRef
    8. Coste J, Ouchchane L, Sarry L, Derost P, Durif F, Gabrillargues J, Hemm S, Lemaire JJ (2009) New electrophysiological mapping combined with MRI in parkinsonian’s subthalamic region. Eur J Neurosci 29(8):1627-633 CrossRef
    9. Cuny E, Guehl D, Burbaud P, Gross C, Dousset V, Rougier A (2002) Lack of agreement between direct magnetic resonance imaging and statistical determination of a subthalamic target: the role of electrophysiological guidance. J Neurosurg 97(3):591-97 CrossRef
    10. Danish SF, Jaggi JL, Moyer JT, Finkel L, Baltuch GH (2006) Conventional MRI is inadequate to delineate the relationship between the red nucleus and subthalamic nucleus in Parkinson’s disease. Stereotact Funct Neurosurg 84(1):12-8 CrossRef
    11. Deuschl G, Schade-Brittinger C, Krack P, Volkmann J, Schafer H, Botzel K, Daniels C, Deutschlander A, Dillmann U, Eisner W, Gruber D, Hamel W, Herzog J, Hilker R, Klebe S, Kloss M, Koy J, Krause M, Kupsch A, Lorenz D, Lorenzl S, Mehdorn HM, Moringlane JR, Oertel W, Pinsker MO, Reichmann H, Reuss A, Schneider GH, Schnitzler A, Steude U, Sturm V, Timmermann L, Tronnier V, Trottenberg T, Wojtecki L, Wolf E, Poewe W, Voges J (2006) A randomized trial of deep-brain stimulation for Parkinson’s disease. N Engl J Med 355(9):896-08. doi:10.1056/NEJMoa060281 CrossRef
    12. Dormont D, Ricciardi KG, Tande D, Parain K, Menuel C, Galanaud D, Navarro S, Cornu P, Agid Y, Yelnik J (2004) Is the subthalamic nucleus hypointense on T2-weighted images? A correlation study using MR imaging and stereotactic atlas data. AJNR Am J Neuroradiol 25(9):1516-523
    13. Forster A, Eljamel MS, Varma TR, Tulley M, Latimer M (1999) Audit of neurophysiological recording during movement disorder surgery. Stereotact Funct Neurosurg 72(2-):154-56 CrossRef
    14. Gorgulho A, De Salles AA, Frighetto L, Behnke E (2005) Incidence of hemorrhage associated with electrophysiological studies performed using macroelectrodes and microelectrodes in functional neurosurgery. J Neurosurg 102(5):888-96 CrossRef
    15. Gross RE, Krack P, Rodriguez-Oroz MC, Rezai AR, Benabid AL (2006) Electrophysiological mapping for the implantation of deep brain stimulators for Parkinson’s disease and tremor. Mov Disord 21(Suppl 14):S259–S283 CrossRef
    16. Group DBSS (2001) Deep brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease. N Engl J Med 345(13):956-63 CrossRef
    17. Guehl D, Edwards R, Cuny E, Burbaud P, Rougier A, Modolo J, Beuter A (2007) Statistical determination of the optimal subthalamic nucleus stimulation site in patients with Parkinson disease. J Neurosurg 106(1):101-10. doi:10.3171/jns.2007.106.1.101 CrossRef
    18. Hamani C, Richter E, Schwalb JM, Lozano AM (2005) Bilateral subthalamic nucleus stimulation for Parkinson’s disease: a systematic review of the clinical literature. Neurosurgery 56(6):1313-321, discussion 1321-314 CrossRef
    19. Hamani C, Saint-Cyr JA, Fraser J, Kaplitt M, Lozano AM (2004) The subthalamic nucleus in the context of movement disorders. Brain 127(Pt 1):4-0 CrossRef
    20. Hariz MI (2002) Safety and risk of microelectrode recording in surgery for movement disorders. Stereotact Funct Neurosurg 78(3-):146-57 CrossRef
    21. Huston OO, Watson RE, Bernstein MA, McGee KP, Stead SM, Gorman DA, Lee KH, Huston J (2011) Intraoperative magnetic resonance imaging findings during deep brain stimulation surgery. J Neurosurg 115(4):852-57. doi:10.3171/2011.5.JNS101457 CrossRef
    22. Israel Z, Burchiel KJ (2004) Microelectrode recording in movement disorder surgery. Thieme, New York
    23. Joel D, Weiner I (1997) The connections of the primate subthalamic nucleus: indirect pathways and the open-interconnected scheme of basal ganglia-thalamocortical circuitry. Brain Res Brain Res Rev 23(1-):62-8 CrossRef
    24. Juri C, Rodriguez-Oroz M, Obeso JA (2010) The pathophysiological basis of sensory disturbances in Parkinson’s disease. J Neurol Sci 289(1-):60-5. doi:10.1016/j.jns.2009.08.018 CrossRef
    25. Lambert C, Zrinzo L, Nagy Z, Lutti A, Hariz M, Foltynie T, Draganski B, Ashburner J, Frackowiak R (2012) Confirmation of functional zones within the human subthalamic nucleus: patterns of connectivity and sub-parcellation using diffusion weighted imaging. Neuroimage 60(1):83-4. doi:10.1016/j.neuroimage.2011.11.082 CrossRef
    26. Lee C, Young B, Sanders MF (2006) The role of the supramammillary commissure in MR localization of the subthalamic nucleus. Stereotact Funct Neurosurg 84(5-):193-04 CrossRef
    27. Lemaire JJ, Coste J, Ouchchane L, Caire F, Nuti C, Derost P, Cristini V, Gabrillargues J, Hemm S, Durif F, Chazal J (2007) Brain mapping in stereotactic surgery: a brief overview from the probabilistic targeting to the patient-based anatomic mapping. Neuroimage 37(Suppl 1):S109–S115 CrossRef
    28. Maldonado IL, Roujeau T, Cif L, Gonzalez V, El-Fertit H, Vasques X, Bonafe A, Coubes P (2009) Magnetic resonance-based deep brain stimulation technique: a series of 478 consecutive implanted electrodes with no perioperative intracerebral hemorrhage. Neurosurgery 65(6 Suppl):196-01, discussion 201-92
    29. McClelland S 3rd, Ford B, Senatus PB, Winfield LM, Du YE, Pullman SL, Yu Q, Frucht SJ, McKhann GM 2nd, Goodman RR (2005) Subthalamic stimulation for Parkinson disease: determination of electrode location necessary for clinical efficacy. Neurosurg Focus 19(5):E12
    30. Niemann K, van Nieuwenhofen I (1999) One atlas—three anatomies: relationships of the Schaltenbrand and Wahren microscopic data. Acta Neurochir (Wien) 141(10):1025-038 CrossRef
    31. O’Gorman RL, Jarosz JM, Samuel M, Clough C, Selway RP, Ashkan K (2009) CT/MR image fusion in the postoperative assessment of electrodes implanted for deep brain stimulation. Stereotact Funct Neurosurg 87(4):205-10. doi:10.1159/000225973 CrossRef
    32. Okun MS, Vitek JL (2004) Lesion therapy for Parkinson’s disease and other movement disorders: update and controversies. Mov Disord 19(4):375-89 CrossRef
    33. Parent A, Hazrati LN (1995) Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Brain Res Rev 20(1):91-27 CrossRef
    34. Parent A, Hazrati LN (1995) Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidum in basal ganglia circuitry. Brain Res Brain Res Rev 20(1):128-54 CrossRef
    35. Patel NK, Khan S, Gill SS (2008) Comparison of atlas- and magnetic-resonance-imaging-based stereotactic targeting of the subthalamic nucleus in the surgical treatment of Parkinson’s disease. Stereotact Funct Neurosurg 86(3):153-61 CrossRef
    36. Plaha P, Ben-Shlomo Y, Patel NK, Gill SS (2006) Stimulation of the caudal zona incerta is superior to stimulation of the subthalamic nucleus in improving contralateral parkinsonism. Brain: A J Neurol 129(Pt 7):1732-747. doi:10.1093/brain/awl127 CrossRef
    37. Pollo C, Meuli R, Maeder P, Vingerhoets F, Ghika J, Villemure JG (2003) Subthalamic nucleus deep brain stimulation for Parkinson’s disease: magnetic resonance imaging targeting using visible anatomical landmarks. Stereotact Funct Neurosurg 80(1-):76-1 CrossRef
    38. Pralong E, Villemure JG, Bloch J, Pollo C, Daniels RT, Ghika J, Vingerhoets F, Tetreault MH, Debatisse D (2004) Quality index for the quantification of the information recorded along standard microelectrode tracks to the subthalamic nucleus in parkinsonian patients. Neurophysiol Clin 34(5):209-15 CrossRef
    39. Sansur CA, Frysinger RC, Pouratian N, Fu KM, Bittl M, Oskouian RJ, Laws ER, Elias WJ (2007) Incidence of symptomatic hemorrhage after stereotactic electrode placement. J Neurosurg 107(5):998-003 CrossRef
    40. Schiff SJ, Dunagan BK, Worth RM (2002) Failure of single-unit neuronal activity to differentiate globus pallidus internus and externus in Parkinson disease. J Neurosurg 97(1):119-28 CrossRef
    41. Schlaier JR, Habermeyer C, Warnat J, Lange M, Janzen A, Hochreiter A, Proescholdt M, Brawanski A, Fellner C (2011) Discrepancies between the MRI- and the electrophysiologically defined subthalamic nucleus. Acta Neurochir (Wien). doi:10.1007/s00701-011-1081-7
    42. Schlaier J, Herzog P, Schoedel P, Aldebert H, Lange M, Doenitz C, Winkler J, Warnat J, Finkenzeller T, Brawanski A (2006) Relevance of correction for rotational targeting error in functional neurosurgery. Comput Aided Surg 11(1):37-2. doi:10.3109/10929080500432132 CrossRef
    43. Schlaier J, Schoedel P, Lange M, Winkler J, Warnat J, Dorenbeck U, Brawanski A (2005) Reliability of atlas-derived coordinates in deep brain stimulation. Acta Neurochir (Wien) 147(11):1175-180, discussion 1180 CrossRef
    44. Schmidt C, Grant P, Lowery M, van Rienen U (2013) Influence of uncertainties in the material properties of brain tissue on the probabilistic volume of tissue activated. IEEE Trans Biomed Eng 60(5):1378-387. doi:10.1109/TBME.2012.2235835 CrossRef
    45. Shink E, Bevan MD, Bolam JP, Smith Y (1996) The subthalamic nucleus and the external pallidum: two tightly interconnected structures that control the output of the basal ganglia in the monkey. Neuroscience 73(2):335-57 CrossRef
    46. Slavin KV, Thulborn KR, Wess C, Nersesyan H (2006) Direct visualization of the human subthalamic nucleus with 3?T MR imaging. AJNR Am J Neuroradiol 27(1):80-4
    47. Starr PA, Christine CW, Theodosopoulos PV, Lindsey N, Byrd D, Mosley A, Marks WJ Jr (2002) Implantation of deep brain stimulators into the subthalamic nucleus: technical approach and magnetic resonance imaging-verified lead locations. J Neurosurg 97(2):370-87 CrossRef
    48. Sterio D, Zonenshayn M, Mogilner AY, Rezai AR, Kiprovski K, Kelly PJ, Beric A (2002) Neurophysiological refinement of subthalamic nucleus targeting. Neurosurgery 50(1):58-7, discussion 67-9
    49. Tripoliti E, Zrinzo L, Martinez-Torres I, Tisch S, Frost E, Borrell E, Hariz MI, Limousin P (2008) Effects of contact location and voltage amplitude on speech and movement in bilateral subthalamic nucleus deep brain stimulation. Movement Disord: Off J Movement Disord Soc 23(16):2377-383. doi:10.1002/mds.22296 CrossRef
    50. Voges J, Hilker R, Botzel K, Kiening KL, Kloss M, Kupsch A, Schnitzler A, Schneider GH, Steude U, Deuschl G, Pinsker MO (2007) Thirty days complication rate following surgery performed for deep-brain-stimulation. Mov Disord 22(10):1486-489 CrossRef
    51. Voges J, Volkmann J, Allert N, Lehrke R, Koulousakis A, Freund HJ, Sturm V (2002) Bilateral high-frequency stimulation in the subthalamic nucleus for the treatment of Parkinson disease: correlation of therapeutic effect with anatomical electrode position. J Neurosurg 96(2):269-79. doi:10.3171/jns.2002.96.2.0269 CrossRef
    52. Volkmann J, Daniels C, Witt K (2010) Neuropsychiatric effects of subthalamic neurostimulation in Parkinson disease. Nat Rev Neurol 6(9):487-98. doi:10.1038/nrneurol.2010.111
    53. Weaver FM, Follett K, Stern M, Hur K, Harris C, Marks WJ Jr, Rothlind J, Sagher O, Reda D, Moy CS, Pahwa R, Burchiel K, Hogarth P, Lai EC, Duda JE, Holloway K, Samii A, Horn S, Bronstein J, Stoner G, Heemskerk J, Huang GD (2009) Bilateral deep brain stimulation vs best medical therapy for patients with advanced Parkinson disease: a randomized controlled trial. JAMA 301(1):63-3. doi:10.1001/jama.2008.929 CrossRef
    54. Williams A, Gill S, Varma T, Jenkinson C, Quinn N, Mitchell R, Scott R, Ives N, Rick C, Daniels J, Patel S, Wheatley K (2010) Deep brain stimulation plus best medical therapy versus best medical therapy alone for advanced Parkinson’s disease (PD SURG trial): a randomised, open-label trial. Lancet Neurol 9(6):581-91. doi:10.1016/S1474-4422(10)70093-4 CrossRef
    55. Wodarg F, Herzog J, Reese R, Falk D, Pinsker MO, Steigerwald F, Jansen O, Deuschl G, Mehdorn HM, Volkmann J (2012) Stimulation site within the MRI-defined STN predicts postoperative motor outcome. Mov Disord 27(7):874-79. doi:10.1002/mds.25006 CrossRef
    56. Zhu XL, Hamel W, Schrader B, Weinert D, Hedderich J, Herzog J, Volkmann J, Deuschl G, Muller D, Mehdorn HM (2002) Magnetic resonance imaging-based morphometry and landmark correlation of basal ganglia nuclei. Acta Neurochir (Wien) 144(10):959-69, discussion 968-59 CrossRef
    57. Zonenshayn M, Rezai AR, Mogilner AY, Beric A, Sterio D, Kelly PJ (2000) Comparison of anatomic and neurophysiological methods for subthalamic nucleus targeting. Neurosurgery 47(2):282-92, discussion 292-84 CrossRef
  • 作者单位:Juergen Ralf Schlaier (1)
    Christine Hanson (1)
    Annette Janzen (2)
    Claudia Fellner (3)
    Andreas Hochreiter (1)
    Martin Proescholdt (1)
    Alexander Brawanski (1)
    Max Lange (1)

    1. Department of Neurosurgery, University of Regensburg, Medical Center, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
    2. Department of Neurology, University of Regensburg, Medical Center, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
    3. Institute of Radiology, University of Regensburg, Medical Center, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
  • ISSN:1437-2320
文摘
This study aims to evaluate the improvements of cardinal motor symptoms depending on the stimulation site relative to a standardized, reconstructed three-dimensional MRI-defined subthalamic nucleus (STN.) This retrospective, clinical study includes 22 patients with idiopathic Parkinson’s disease, who consecutively underwent bilateral subthalamic nucleus stimulation. Intraoperative microelectrode recording and clinical testing were performed. The location of the best stimulation site, found intraoperatively, and the positions of the active electrode contacts 12?months after the operation were correlated to a standardized, reconstructed three-dimensional MRI-defined STN. Further, the impact of the stimulation site on rigidity, tremor and akinesia was analysed. Significant improvement of the contralateral akinesia was observed if the intraoperative stimulation site was located more lateral and superior in the MRI-STN. Furthermore, active electrode contacts located superior to or in the superior part of the MRI-STN had a significantly better effect on the tremor of the contralateral hand than in other locations inside the STN. For rigidity and akinesia, these correlations were statistically not significant. Although we found significantly better results for tremor suppression in superior and lateral aspects of the STN, for overall clinical improvement, several patients fared better with randomly distributed stimulation sites in medial, posterior or inferior parts of the MRI-defined STN. Locations of stimulation sites with the best improvements of motor symptoms were distributed randomly throughout the whole MRI-defined STN, indicating that MRI-based targeting alone is not sufficient, but intraoperative clinical testing is necessary to determine the optimal stimulation site for each individual patient.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700