QTL and candidate gene mapping for polyphenolic composition in apple fruit
详细信息    查看全文
  • 作者:David Chagné (1)
    Célia Krieger (1) (2)
    Maysoon Rassam (3)
    Mike Sullivan (3)
    Jenny Fraser (4)
    Christelle André (3)
    Massimo Pindo (5)
    Michela Troggio (5)
    Susan E Gardiner (1)
    Rebecca A Henry (3)
    Andrew C Allan (3) (6)
    Tony K McGhie (1)
    William A Laing (3)
  • 关键词:Malus x domestica ; polyphenolic ; QTL mapping ; candidate gene ; flavonoid ; flavanol ; anthocyanin ; tannin ; metabolomics
  • 刊名:BMC Plant Biology
  • 出版年:2012
  • 出版时间:December 2012
  • 年:2012
  • 卷:12
  • 期:1
  • 全文大小:467KB
  • 参考文献:1. Willett WC: g class="a-plus-plus">Balancing life-style and genomics research for disease prevention.g> / Science 2002,g class="a-plus-plus">296g>(5568)g class="a-plus-plus">:g>695-98. g/10.1126/science.1071055">CrossRef
    2. McGhie TK, Hunt M, Barnett LE: g class="a-plus-plus">Cultivar and growing region determine the antioxidant polyphenolic concentration and composition of apples grown in New Zealand.g> / J Agric Food Chem 2005,g class="a-plus-plus">53g>(8)g class="a-plus-plus">:g>3065-070. g/10.1021/jf047832r">CrossRef
    3. Boyer J, Liu RH: g class="a-plus-plus">Apple phytochemicals and their health benefits.g> / Nutr J 2004.,g class="a-plus-plus">3g>(5)g class="a-plus-plus">:g> (12 May 2004)
    4. Davey MW, Kenis K, Keulemans J: g class="a-plus-plus">Genetic control of fruit vitamin C contents.g> / Plant Phys 2006,g class="a-plus-plus">142g>(1)g class="a-plus-plus">:g>343-51. g/10.1104/pp.106.083279">CrossRef
    5. Hertog MGL, Hollman PCH, Katan MB, Kromhout D: g class="a-plus-plus">Intake of potentially anticarcinogenic flavonoids and their determinants in adults in the Netherlands.g> / Nutr Cancer 1993,g class="a-plus-plus">20g>(1)g class="a-plus-plus">:g>21-9. g/10.1080/01635589309514267">CrossRef
    6. Vinson JA, Su XH, Zubik L, Bose P: g class="a-plus-plus">Phenol antioxidant quantity and quality in foods: Fruits.g> / J Agric Food Chem 2001,g class="a-plus-plus">49g>(11)g class="a-plus-plus">:g>5315-321. g/10.1021/jf0009293">CrossRef
    7. Arts ICW, Hollman PCH: g class="a-plus-plus">Polyphenols and disease risk in epidemiologic studies.g> / Am J Clin Nutr 2005,g class="a-plus-plus">81g>(1)g class="a-plus-plus">:g>317S-325S.
    8. Halliwell B, Rafter J, Jenner A: g class="a-plus-plus">Health promotion by flavonoids, tocopherols, tocotrienols, and other phenols: direct or indirect effects? Antioxidant or not?g> / Am J Clin Nutr 2005,g class="a-plus-plus">81g>(1)g class="a-plus-plus">:g>268S-276S.
    9. Feng RT, Lu YJ, Bowman LL, Qian Y, Castranova V, Ding M: g class="a-plus-plus">Inhibition of activator protein-1, NF-kappa B, and MAPKs and induction of phase 2 detoxifying enzyme activity by chlorogenic acid.g> / J Bio Chem 2005,g class="a-plus-plus">280g>(30)g class="a-plus-plus">:g>27888-7895. g/10.1074/jbc.M503347200">CrossRef
    10. Stevenson DE, Hurst RD: g class="a-plus-plus">Polyphenolic phytochemicals - just antioxidants or much more?g> / Cell Molec Life Sci 2007,g class="a-plus-plus">64g>(22)g class="a-plus-plus">:g>2900-916. g/10.1007/s00018-007-7237-1">CrossRef
    11. Manach C, Williamson G, Morand C, Scalbert A, Remesy C: g class="a-plus-plus">Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies.g> / Am J Clin Nutr 2005,g class="a-plus-plus">81g>(1)g class="a-plus-plus">:g>230S-242S.
    12. Daayf F, Lattanzio V (Eds): g class="a-plus-plus">Recent advances in polyphenol researchg> In 2008., g class="a-plus-plus">1:g>
    13. Santos-Buelga C, Escribano-Bailon MT, Lattanzio V (Eds): g class="a-plus-plus">Recent advances in polyphenol researchg> In 2010., g class="a-plus-plus">2:g>
    14. Volz RK, McGhie TK: g class="a-plus-plus">Genetic variability in apple fruit polyphenol composition ing> g class="a-plus-plus">Malusg> g class="a-plus-plus">×g> g class="a-plus-plus">domesticag> g class="a-plus-plus">andg> g class="a-plus-plus">Malus sieversiig> g class="a-plus-plus">germplasm grown in New Zealand.g> / J Agric Food Chem 2011,g class="a-plus-plus">59g>(21)g class="a-plus-plus">:g>11509-1521. g/10.1021/jf202680h">CrossRef
    15. Mattila P, Hellstr?m J, T?rr?nen R: g class="a-plus-plus">Phenolic acids in berries, fruits, and beverages.g> / J Agric Food Chem 2006,g class="a-plus-plus">54g>(19)g class="a-plus-plus">:g>7193-199. g/10.1021/jf0615247">CrossRef
    16. Laurens F: g class="a-plus-plus">Review of the current apple breeding programmes in the world: objectives for scion cultivar improvement.g> / Acta Hort 1999, g class="a-plus-plus">484:g>163-70.
    17. Chagné D, Carlisle CM, Blond C, Volz RK, Whitworth CJ, Oraguzie NC, Crowhurst RN, Allan AC, Espley RV, Hellens RP, / et al.: g class="a-plus-plus">Mapping a candidate gene (g> g class="a-plus-plus">MdMYB10g> g class="a-plus-plus">) for red flesh and foliage colour in apple.g> / BMC Genomics 2007, g class="a-plus-plus">8:g>212. g/10.1186/1471-2164-8-212">CrossRef
    18. Espley RV, Brendolise C, Chagne D, Kutty-Amma S, Green S, Volz R, Putterill J, Schouten HJ, Gardiner SE, Hellens RP, / et al.: g class="a-plus-plus">Multiple repeats of a promoter segment causes transcription factor autoregulation in red apples.g> / Plant Cell 2009,g class="a-plus-plus">21g>(1)g class="a-plus-plus">:g>168-83. g/10.1105/tpc.108.059329">CrossRef
    19. Espley RV, Hellens RP, Putterill J, Stevenson DE, Kutty-Amma S, Allan AC: g class="a-plus-plus">Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10.g> / Plant J 2007,g class="a-plus-plus">49g>(3)g class="a-plus-plus">:g>414-27. g/10.1111/j.1365-313X.2006.02964.x">CrossRef
    20. Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D, / et al.: g class="a-plus-plus">The genome of the domesticated apple (g> g class="a-plus-plus">Malusg> g class="a-plus-plus">xg> g class="a-plus-plus">domesticag> g class="a-plus-plus">Borkh.).g> / Nat Genet 2010,g class="a-plus-plus">42g>(10)g class="a-plus-plus">:g>833-39. g/10.1038/ng.654">CrossRef
    21. Sonnante G, D'Amore R, Blanco E, Pierri CL, De Palma M, Luo J, Tucci M, Martin C: g class="a-plus-plus">Novel hydroxycinnamoyl-coenzyme A quinate transferase genes from artichoke are involved in the synthesis of chlorogenic acid.g> / Plant Phys 2010,g class="a-plus-plus">153g>(3)g class="a-plus-plus">:g>1224-238. g/10.1104/pp.109.150144">CrossRef
    22. Takos AM, Ubi BE, Robinson SP, Walker AR: g class="a-plus-plus">Condensed tannin biosynthesis genes are regulated separately from other flavonoid biosynthesis genes in apple fruit skin.g> / Plant Sci 2006,g class="a-plus-plus">170g>(3)g class="a-plus-plus">:g>487-99. g/10.1016/j.plantsci.2005.10.001">CrossRef
    23. Takos AM, Jaffe FW, Jacob SR, Bogs J, Robinson SP, Walker AR: g class="a-plus-plus">Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples.g> / Plant Phys 2006,g class="a-plus-plus">142g>(3)g class="a-plus-plus">:g>1216-232. g/10.1104/pp.106.088104">CrossRef
    24. Cheng FS, Weeden NF, Brown SK: g class="a-plus-plus">Identification of co dominant RAPD markers tightly linked to fruit skin color in apple.g> / Theor Appl Genet 1996,g class="a-plus-plus">93g>(1-)g class="a-plus-plus">:g>222-27. g/10.1007/BF00225749">CrossRef
    25. Maliepaard C, Alston FH, van Arkel G, Brown LM, Chevreau E, Dunemann F, Evans KM, Gardiner S, Guilford P, van Heusden AW, / et al.: g class="a-plus-plus">Aligning male and female linkage maps of apple (g> g class="a-plus-plus">Malus pumilag> g class="a-plus-plus">Mill.) using multi-allelic markers.g> / Theor Appl Genet 1998,g class="a-plus-plus">97g>(1-)g class="a-plus-plus">:g>60-3. g/10.1007/s001220050867">CrossRef
    26. Lepelley M, Cheminade G, Tremillon N, Simkin A, Caillet V, McCarthy J: g class="a-plus-plus">Chlorogenic acid synthesis in coffee: An analysis of CGA content and real-time RT-PCR expression ofg> g class="a-plus-plus">HCTg> g class="a-plus-plus">,g> g class="a-plus-plus">HQTg> g class="a-plus-plus">,g> g class="a-plus-plus">C3H1g> g class="a-plus-plus">, andg> g class="a-plus-plus">CCoAOMT1g> g class="a-plus-plus">genes during grain development ing> g class="a-plus-plus">C. canephorag> g class="a-plus-plus">.g> / Plant Sci 2007,g class="a-plus-plus">172g>(5)g class="a-plus-plus">:g>978-96. g/10.1016/j.plantsci.2007.02.004">CrossRef
    27. Menin B, Comino C, Moglia A, Dolzhenko Y, Portis E, Lanteri S: g class="a-plus-plus">Identification and mapping of genes related to caffeoylquinic acid synthesis ing> g class="a-plus-plus">Cynara cardunculusg> g class="a-plus-plus">L.g> / Plant Sci 2010,g class="a-plus-plus">179g>(4)g class="a-plus-plus">:g>338-47. g/10.1016/j.plantsci.2010.06.010">CrossRef
    28. Szankowski I, Flachowsky H, Li H, Halbwirth H, Treutter D, Regos I, Hanke M-V, Stich K, Fischer T: g class="a-plus-plus">Shift in polyphenol profile and sublethal phenotype caused by silencing of anthocyanidin synthase in apple (g> g class="a-plus-plus">Malusg> g class="a-plus-plus">sp.).g> / Planta 2009,g class="a-plus-plus">229g>(3)g class="a-plus-plus">:g>681-92. g/10.1007/s00425-008-0864-4">CrossRef
    29. Conner PJ, Brown SK, Weeden NF: g class="a-plus-plus">Randomly amplified polymorphic DNA-based genetic linkage maps of three apple cultivars.g> / J Am Soc Hort Sci 1997,g class="a-plus-plus">122g>(3)g class="a-plus-plus">:g>350-59.
    30. Harker FR, Kupferman EM, Marin AB, Gunson FA, Triggs CM: g class="a-plus-plus">Eating quality standards for apples based on consumer preferences.g> / Postharv Bio Tech 2008,g class="a-plus-plus">50g>(1)g class="a-plus-plus">:g>70-8. g/10.1016/j.postharvbio.2008.03.020">CrossRef
    31. Hosono S, Faruqi AF, Dean FB, Du YF, Sun ZY, Wu XH, Du J, Kingsmore SF, Egholm M, Lasken RS: g class="a-plus-plus">Unbiased whole-genome amplification directly from clinical samples.g> / Genome Res 2003,g class="a-plus-plus">13g>(5)g class="a-plus-plus">:g>954-64. g/10.1101/gr.816903">CrossRef
    32. Tobler AR, Short S, Andersen MR, Paner TM, Briggs JC, Lambert SM, Wu PP, Wang Y, Spoonde AY, Koehler RT, / et al.: g class="a-plus-plus">The SNPlex genotyping system: a flexible and scalable platform for SNP genotyping.g> / J Biomol Tech 2005,g class="a-plus-plus">16g>(4)g class="a-plus-plus">:g>398-06.
    33. Grattapaglia D, Sederoff R: g class="a-plus-plus">Genetic linkage maps ofg> g class="a-plus-plus">Eucalyptus grandisg> g class="a-plus-plus">andg> g class="a-plus-plus">Eucalyptus urophyllag> g class="a-plus-plus">using a pseudo-testcross: Mapping strategy and RAPD markers.g> / Genetics 1994,g class="a-plus-plus">137g>(4)g class="a-plus-plus">:g>1121-137.
    34. Van Ooijen JW, Voorrips RE: / JoinMap / ? / 3.0, Software for the calculation of genetic linkage maps. Wageningen, The Netherlands: Plant Research International; 2001.
    35. Ooijen V: / MapQTL5, Software for the mapping of quantitative trait loci in experimental populations. Wageningen, Netherlands; 2004.
    36. Chagné D, Gasic K, Crowhurst RN, Han Y, Bassett HC, Bowatte DR, Lawrence TJ, Rikkerink EHA, Gardiner SE, Korban SS: g class="a-plus-plus">Development of a set of SNP markers present in expressed genes of the apple.g> / Genomics 2008,g class="a-plus-plus">92g>(5)g class="a-plus-plus">:g>353-58. g/10.1016/j.ygeno.2008.07.008">CrossRef
    37. Crowhurst RN, Davy M, Deng C: g class="a-plus-plus">BioView - an enterprise bioinformatics system for automated analysis and annotation of non-genomic DNA sequence.g> In / 3rd International Rosaceae Genomics Conference. Edited by: Gardiner SE. Napier, New Zealand; 2006.
  • 作者单位:David Chagné (1)
    Célia Krieger (1) (2)
    Maysoon Rassam (3)
    Mike Sullivan (3)
    Jenny Fraser (4)
    Christelle André (3)
    Massimo Pindo (5)
    Michela Troggio (5)
    Susan E Gardiner (1)
    Rebecca A Henry (3)
    Andrew C Allan (3) (6)
    Tony K McGhie (1)
    William A Laing (3)

    1. The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research), Palmerston North Research Centre, Palmerston North, 4442, New Zealand
    2. UMR 1121 Nancy Université-Institut National de la Recherche Agronomique Agronomie Environnement Nancy-Colmar, 2 Avenue de la Forêt de Haye, 54505, Vandoeuvre-lès-Nancy, France
    3. Plant & Food Research, Mount Albert Research Centre, Auckland, New Zealand
    4. Plant & Food Research, Central Otago Research Centre, Clyde, New Zealand
    5. IASMA Research and Innovation Centre, Foundation Edmund Mach, San Michele all’Adige, Trento, Italy
    6. School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand
文摘
Background The polyphenolic products of the phenylpropanoid pathway, including proanthocyanidins, anthocyanins and flavonols, possess antioxidant properties that may provide health benefits. To investigate the genetic architecture of control of their biosynthesis in apple fruit, various polyphenolic compounds were quantified in progeny from a 'Royal Gala' × 'Braeburn' apple population segregating for antioxidant content, using ultra high performance liquid chromatography of extracts derived from fruit cortex and skin. Results Construction of genetic maps for 'Royal Gala' and 'Braeburn' enabled detection of 79 quantitative trait loci (QTL) for content of 17 fruit polyphenolic compounds. Seven QTL clusters were stable across two years of harvest and included QTLs for content of flavanols, flavonols, anthocyanins and hydroxycinnamic acids. Alignment of the parental genetic maps with the apple whole genome sequence in silico enabled screening for co-segregation with the QTLs of a range of candidate genes coding for enzymes in the polyphenolic biosynthetic pathway. This co-location was confirmed by genetic mapping of markers derived from the gene sequences. Leucoanthocyanidin reductase (LAR1) co-located with a QTL cluster for the fruit flavanols catechin, epicatechin, procyanidin dimer and five unknown procyanidin oligomers identified near the top of linkage group (LG) 16, while hydroxy cinnamate/quinate transferase (HCT/HQT) co-located with a QTL for chlorogenic acid concentration mapping near the bottom of LG 17. Conclusion We conclude that LAR1 and HCT/HQT are likely to influence the concentration of these compounds in apple fruit and provide useful allele-specific markers for marker assisted selection of trees bearing fruit with healthy attributes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700