Glycocalyx and sepsis-induced alterations in vascular permeability
详细信息    查看全文
  • 作者:Cosimo Chelazzi (1)
    Gianluca Villa (1)
    Paola Mancinelli (1)
    A Raffaele De Gaudio (1)
    Chiara Adembri (1)

    1. Department of Health Sciences
    ; University of Florence ; Section of Anesthesiology ; Intensive Care and Pain Medicine ; Viale Pieraccini ; 6 ; 50139 ; Florence ; Italy
  • 刊名:Critical Care
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:19
  • 期:1
  • 全文大小:806 KB
  • 参考文献:1. Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Intensive Care Med. 2008;34:17鈥?0. 134-007-0934-2" target="_blank" title="It opens in new window">CrossRef
    2. Christaki E, Opal SM. Is the mortality rate for septic shock really decreasing? Curr Opin Crit Care. 2008;14:580鈥?. 13e32830f1e25" target="_blank" title="It opens in new window">CrossRef
    3. De Backer D, Orbegozo Cortes D, Donadello K, Vincent JL. Pathophysiology of microcirculatory dysfunction and the pathogenesis of septic shock. Virulence. 2014;5:73鈥?. CrossRef
    4. Paulus P, Jennewein C, Zacharowski K. Biomarkers of endothelial dysfunction: can they help us deciphering systemic inflammation and sepsis? Biomarkers. 2011;16 Suppl 1:S11鈥?1. 1354750X.2011.587893" target="_blank" title="It opens in new window">CrossRef
    5. De Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL. Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med. 2002;166:98鈥?04. CrossRef
    6. Becker BF, Chappell D, Bruegger D, Annecke T, Jacob M. Therapeutic strategies targeting the endothelial glycocalyx: acute deficits, but great potential. Cardiovasc Res. 2010;87:300鈥?0. 137" target="_blank" title="It opens in new window">CrossRef
    7. Donati A, Domizi R, Damiani E, Adrario E, Pelaia P, Ince C. From macrohemodynamic to the microcirculation. Crit Care Res Pract. 2013;2013:892710.
    8. Salmon AH, Satchell SC. Endothelial glycocalyx dysfunction in disease: albuminuria and increased microvascular permeability. J Pathol. 2012;226:562鈥?4. CrossRef
    9. De Gaudio AR, Adembri C, Grechi S, Novelli GP. Microalbuminuria as an early index of impairment of glomerular permeability in postoperative septic patients. Intensive Care Med. 2000;26:1364鈥?. 1340000593" target="_blank" title="It opens in new window">CrossRef
    10. Karamysheva AF. Mechanisms of angiogenesis. Biochemistry (Mosc). 2008;73:751鈥?2. 134/S0006297908070031" target="_blank" title="It opens in new window">CrossRef
    11. Levick JR, Smaje LH. An analysis of the permeability of a fenestra. Microvasc Res. 1987;33:233鈥?6. CrossRef
    12. Reitsma S, Slaaf DW, Vink H, van Zandvoort MA, oude Egbrink MG. The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch. 2007;454:345鈥?9. CrossRef
    13. Li L, Ly M, Linhardt RJ. Proteoglycan sequence. Mol Biosyst. 2012;8:1613鈥?5. CrossRef
    14. Luft HJ. Fine structure of capillary and endocapillary layer as revealed by ruthenium red. Fed Proc. 1966;25:1773鈥?3.
    15. Kol谩艡ov谩 H, Ambr暖zov谩 B, Svih谩lkov谩 艩indlerov谩 L, Klinke A, Kubala L. Modulation of endothelial glycocalyx structure under inflammatory conditions. Mediators Inflamm. 2014;2014:694312.
    16. Pries AR, Secomb TW, Gaehtgens P. The endothelial surface layer. Pflugers Arch. 2000;440:653鈥?6. CrossRef
    17. Megens RT, Reitsma S, Schiffers PH, Hilgers RH, De Mey JG, Slaaf DW, et al. Two-photon microscopy of vital murine elastic and muscular arteries. Combined structural and functional imaging with subcellular resolution. J Vasc Res. 2007;44:87鈥?8. CrossRef
    18. Copley AL, Staple PH. Haemorheological studies on the plasmatic zone in the microcirculation of the cheek pouch of Chinese and Syrian hamsters. Biorheology. 1962;1:3鈥?4.
    19. Lekakis J, Abraham P, Balbarini A, Blann A, Boulanger CM, Cockcroft J, et al. Methods for evaluating endothelial function: a position statement from the European Society of Cardiology Working Group on Peripheral Circulation. Eur J Cardiovasc Prev Rehabil. 2011;18:775鈥?9. 1398179" target="_blank" title="It opens in new window">CrossRef
    20. Woodcock TE, Woodcock TM. Revised Starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy. Br J Anaesth. 2012;108:384鈥?4. CrossRef
    21. Frati-Munari AC. Medical significance of endothelial glycocalyx. Arch Cardiol Mex. 2013;83:303鈥?2.
    22. Yuan S, Rigor R. Structure and function of exchange microvessels. In Regulation of Endothelial Barrier Function. Edited by Granger DN and Granger JP. San Rafael: Morgan & Claypool Life Sciences; 2010:1-13. [Granger DN and Granger JP (Series Editors): Integrated Systems Physiology:From Molecule to Function to Disease].
    23. Serpa Neto A, Veelo DP, Peireira VG, de Assun莽茫o MS, Manetta JA, Esp贸sito DC, et al. Fluid resuscitation with hydroxyethyl starches in patients with sepsis is associated with an increased incidence of acute kidney injury and use of renal replacement therapy: a systematic review and meta-analysis of the literature. J Crit Care. 2014;29:185.e1-7. 13.09.031" target="_blank" title="It opens in new window">CrossRef
    24. Caironi P, Tognoni G, Masson S, Fumagalli R, Pesenti A, Romero M, et al. Albumin replacement in patients with severe sepsis or septic shock. N Engl J Med. 2014;370:1412鈥?1. 1305727" target="_blank" title="It opens in new window">CrossRef
    25. Bark BP, Persson J, Gr盲nde PO. Importance of the infusion rate for the plasma expanding effect of 5% albumin, 6% HES 130/0.4, 4% gelatin, and 0.9% NaCl in the septic rat. Crit Care Med. 2013;41:857鈥?6. 13e318274157e" target="_blank" title="It opens in new window">CrossRef
    26. Donati A, Damiani E, Domizi R, Romano R, Adrario E, Pelaia P, et al. Alteration of the sublingual microvascular glycocalyx in critically ill patients. Microvasc Res. 2013;90:86鈥?. 13.08.007" target="_blank" title="It opens in new window">CrossRef
    27. Schmidt EP, Yang Y, Janssen WJ, Gandjeva A, Perez MJ, Barthel L, et al. The pulmonary endothelial glycocalyx regulates neutrophil adhesion and lung injury during experimental sepsis. Nat Med. 2012;18:1217鈥?3. CrossRef
    28. Singh A, Ramnath RD, Foster RR, Wylie EC, Frid茅n V, Dasgupta I, et al. Reactive oxygen species modulate the barrier function of the human glomerular endothelial glycocalyx. PLoS One. 2013;8:e55852. 1371/journal.pone.0055852" target="_blank" title="It opens in new window">CrossRef
    29. Stehouwer CD, Smulders YM. Microalbuminuria and risk for cardiovascular disease: analysis of potential mechanisms. J Am Soc Nephrol. 2006;17:2106鈥?1. CrossRef
    30. Forbes JM, Coughlan MT, Cooper ME. Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes. 2008;57:1446鈥?4. CrossRef
    31. Adachi T, Fukushima T, Usami Y, Hirano K. Binding of human xanthine oxidase to sulphated glycosaminoglycans on the endothelial-cell surface. Biochem J. 1993;289:523鈥?.
    32. Becker M, Menger MD, Lehr HA. Heparin-released superoxide dismutase inhibits postischemic leukocyte adhesion to venular endothelium. Am J Physiol. 1994;267:H925鈥?30.
    33. Myburgh JA, Mythen MG. Resuscitation fluids. N Engl J Med. 2013;369:1243鈥?1. CrossRef
    34. Henrich M, Gruss M, Weigand MA. Sepsis-induced degradation of endothelial glycocalix. Sci World J. 2010;10:917鈥?3. CrossRef
    35. Wiesinger A, Peters W, Chappell D, Kentrup D, Reuter S, Pavenst盲dt H, et al. Nanomechanics of the endothelial glycocalyx in experimental sepsis. PLoS One. 2013;8:e80905. 1371/journal.pone.0080905" target="_blank" title="It opens in new window">CrossRef
    36. Sakr Y, Dubois MJ, De Backer D, Creteur J, Vincent JL. Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med. 2004;32:1825鈥?1. 138558.16257.3F" target="_blank" title="It opens in new window">CrossRef
    37. Chelazzi C, Villa G, De Gaudio AR. Cardiorenal syndromes and sepsis. Int J Nephrol. 2011;2011:652967. CrossRef
    38. Steppan J, Hofer S, Funke B, Brenner T, Henrich M, Martin E, et al. Sepsis and major abdominal surgery lead to flaking of the endothelial glycocalix. J Surg Res. 2011;165:136鈥?1. CrossRef
    39. Gunst J, Derese I, Aertgeerts A, Ververs EJ, Wauters A, Van den Berghe G, et al. Insufficient autophagy contributes to mitochondrial dysfunction, organ failure, and adverse outcome in an animal model of critical illness. Crit Care Med. 2013;41:182鈥?4. 13e3182676657" target="_blank" title="It opens in new window">CrossRef
    40. Adembri C, Sgambati E, Vitali L, Selmi V, Margheri M, Tani A, et al. Sepsis induces albuminuria and alterations in the glomerular filtration barrier: a morphofunctional study in the rat. Crit Care. 2011;15:R277. CrossRef
    41. Pierrakos C, Vincent JL. Sepsis biomarkers: a review. Crit Care. 2010;14:R15. CrossRef
    42. Nakamura T, Ushiyama C, Suzuki Y, Shoji H, Shimada N, Koide H. Hemoperfusion with polymyxin B immobilized fibers for urinary albumin excretion in septic patients with trauma. ASAIO J. 2002;48:244鈥?. CrossRef
    43. Hippenstiel S, Kr眉ll M, Ikemann A, Risau W, Clauss M, Suttorp N. VEGF induces hyperpermeability by a direct action on endothelial cells. Am J Physiol. 1998;274:L678鈥?4.
    44. Rinaldi S, Adembri C, Grechi S, De Gaudio AR. Low-dose hydrocortisone during severe sepsis: effects on microalbuminuria. Crit Care Med. 2006;34:2334鈥?. CrossRef
    45. Abid O, Sun Q, Sugimoto K, Mercan D, Vincent JL. Predictive value of microalbuminuria in medical ICU patients: results of a pilot study. Chest. 2001;120:1984鈥?. 1378/chest.120.6.1984" target="_blank" title="It opens in new window">CrossRef
    46. Herrera R, Almaguer M, Chipi J, Mart铆nez O, Bacallao J, Rodr铆guez N, et al. Albuminuria as a marker of kidney and cardio-cerebral vascular damage. Isle of Youth Study (ISYS), Cuba. MEDICC Rev. 2010;12:20鈥?.
    47. Koike K, Aiboshi J, Shinozawa Y, Sekine K, Endo T, Yamamoto Y. Correlation of glomerular permeability, endothelial injury, and postoperative multiple organ dysfunction. Surg Today. 2004;34:811鈥?.
    48. Chappell D, Hofmann-Kiefer K, Jacob M, Rehm M, Briegel J, Welsch U, et al. TNF-alpha induced shedding of the endothelial glycocalyx is prevented by hydrocortisone and antithrombin. Basic Res Cardiol. 2009;104:78鈥?9. CrossRef
    49. Moseley R, Waddington RJ, Embery G. Degradation of glycosaminoglycans by reactive oxygen species derived from stimulated polymorphonuclear leukocytes. Biochim Biophys Acta. 1997;1362:221鈥?1. CrossRef
    50. Constantinescu A, Spaan JA, Arkenbout EK, Vink H, Vanteeffelen JW. Degradation of the endothelial glycocalyx is associated with chylomicron leakage in mouse cremaster muscle microcirculation. Thromb Haemost. 2011;105:790鈥?01. CrossRef
    51. Iantorno M, Campia U, Di Daniele N, Nistico S, Forleo GB, Cardillo C, et al. Obesity, inflammation and endothelial dysfunction. J Biol Regul Homeost Agents. 2014;28:169鈥?6.
    52. van den Berg BM, Spaan JA, Rolf TM, Vink H. Atherogenic region and diet diminish glycocalyx dimension and increase intima-to-media ratios at murine carotid artery bifurcation. Am J Physiol Heart Circ Physiol. 2006;290:H915鈥?0. CrossRef
    53. Meuwese MC, Mooij HL, Nieuwdorp M, van Lith B, Marck R, Vink H, et al. Partial recovery of the endothelial glycocalyx upon rosuvastatin therapy in patients with heterozygous familial hypercholesterolemia. J Lipid Res. 2009;50:148鈥?3. CrossRef
    54. Zuurbier CJ, Demirci C, Koeman A, Vink H, Ince C. Short-term hyperglycemia increases endothelial glycocalyx permeability and acutely decreases lineal density of capillaries with flowing red blood cells. J Appl Physiol (1985). 2005;99:1471鈥?. CrossRef
    55. Broekhuizen LN, Lemkes BA, Mooij HL, Meuwese MC, Verberne H, Holleman F, et al. Effect of sulodexide on endothelial glycocalyx and vascular permeability in patients with type 2 diabetes mellitus. Diabetologia. 2010;53:2646鈥?5. CrossRef
    56. Haywood-Watson RJ, Holcomb JB, Gonzalez EA, Peng Z, Pati S, Park PW, et al. Modulation of syndecan-1 shedding after hemorrhagic shock and resuscitation. PLoS One. 2011;6:e23530. 1371/journal.pone.0023530" target="_blank" title="It opens in new window">CrossRef
    57. Johansson PI, Stensballe J, Rasmussen LS, Ostrowski SR. A high admission syndecan-1 level, a marker of endothelial glycocalyx degradation, is associated with inflammation, protein C depletion, fibrinolysis, and increased mortality in trauma patients. Ann Surg. 2011;254:194鈥?00. 13e318226113d" target="_blank" title="It opens in new window">CrossRef
    58. Lehr HA, Bittinger F, Kirkpatrick CJ. Microcirculatory dysfunction in sepsis: a pathogenetic basis for therapy? J Pathol. 2000;190:373鈥?6. CrossRef
    59. Sarrazin S, Lyon M, Deakin JA, Guerrini M, Lassalle P, Delehedde M, et al. Characterization and binding activity of the chondroitin/dermatan sulfate chain from Endocan, a soluble endothelial proteoglycan. Glycobiology. 2010;20:1380鈥?. CrossRef
    60. Mikkelsen ME, Shah CV, Scherpereel A, Lanken PN, Lassalle P, Bellamy SL, et al. Lower serum endocan levels are associated with the development of acute lung injury after major trauma. J Crit Care. 2012;27:522.e11-7. CrossRef
    61. Sarti A, De Gaudio AR, Messineo A, Cuttini M, Ventura A. Glomerular permeability after surgical trauma in children: relationship between microalbuminuria and surgical stress score. Crit Care Med. 2001;29:1626鈥?. CrossRef
    62. Pallister I, Dent C, Wise CC, Alpar EK, Gosling P. Early post-traumatic acute respiratory distress syndrome and albumin excretion rate: a prospective evaluation of a 鈥榩oint-of care鈥?predictive test. Injury. 2001;32:177鈥?1. 1383(00)00149-2" target="_blank" title="It opens in new window">CrossRef
    63. Gosling P, Brudney S, McGrath L, Riseboro S, Manji M. Mortality prediction at admission to intensive care: a comparison of microalbuminuria with acute physiology scores after 24聽hours. Crit Care Med. 2003;31:98鈥?03. CrossRef
    64. Thorevska N, Sabahi R, Upadya A, Manthous C, Amoateng-Adjepong Y. Microalbuminuria in critically ill medical patients: prevalence, predictors, and prognostic significance. Crit Care Med. 2003;31:1075鈥?1. CrossRef
    65. Honarmand A, Safavi M, Baghery K, Momayezi A. The association of microalbuminuria and duration of mechanical ventilation in critically ill trauma patients. Ulus Travma Acil Cerrahi Derg. 2009;15:12鈥?.
    66. Basu S, Bhattacharya M, Chatterjee TK, Chaudhuri S, Todi SK, Majumdar A. Microalbuminuria: a novel biomarker of sepsis. Indian J Crit Care Med. 2010;14:22鈥?. CrossRef
    67. Kranidioti H, Orfanos SE, Vaki I, Kotanidou A, Raftogiannis M, Dimopoulou I, et al. Angiopoietin-2 is increased in septic shock: evidence for the existence of a circulating factor stimulating its release from human monocytes. Immunol Lett. 2009;125:65鈥?1. CrossRef
    68. Xing K, Murthy S, Liles WC, Singh JM. Clinical utility of biomarkers of endothelial activation in sepsis - a systematic review. Crit Care. 2012;16:R7. CrossRef
    69. Siner JM, Bhandari V, Engle KM, Elias JA, Siegel MD. Elevated serum angiopoietin 2 levels are associated with increased mortality in sepsis. Shock. 2009;31:348鈥?3. 13e318188bd06" target="_blank" title="It opens in new window">CrossRef
    70. Annane D. Corticosteroids for severe sepsis: an evidence-based guide for physicians. Ann Intensive Care. 2011;1:7. CrossRef
    71. Moran JL, Graham PL, Rockliff S, Bersten AD. Updating the evidence for the role of corticosteroids in severe sepsis and septic shock: a Bayesian meta-analytic perspective. Crit Care. 2010;14:R134. CrossRef
    72. Marechal X, Favory R, Joulin O, Montaigne D, Hassoun S, Decoster B, et al. Endothelial glycocalyx damage during endotoxemia coincides with microcirculatory dysfunction and vascular oxidative stress. Shock. 2008;29:572鈥?.
    73. Nieuwdorp M, van Haeften TW, Gouverneur MC, Mooij HL, van Lieshout MH, Levi M, et al. Loss of endothelial glycocalyx during acute hyperglycemia coincides with endothelial dysfunction and coagulation activation in vivo. Diabetes. 2006;55:480鈥?. CrossRef
    74. Eskens BJ, Zuurbier CJ, van Haare J, Vink H, van Teeffelen JW. Effects of two weeks of metformin treatment on whole-body glycocalyx barrier properties in db/db mice. Cardiovasc Diabetol. 2013;12:175. CrossRef
  • 刊物主题:Intensive / Critical Care Medicine; Emergency Medicine;
  • 出版者:BioMed Central
  • ISSN:1364-8535
文摘
Endothelial cells line the inner portion of the heart, blood vessels, and lymphatic vessels; a basal membrane of extracellular matrix lines the extraluminal side of endothelial cells. The apical side of endothelial cells is the site for the glycocalyx, which is a complex network of macromolecules, including cell-bound proteoglycans and sialoproteins. Sepsis-associated alterations of this structure may compromise endothelial permeability with associated interstitial fluid shift and generalized edema. Indeed, in sepsis, the glycocalyx acts as a target for inflammatory mediators and leukocytes, and its ubiquitous nature explains the damage of tissues that occurs distant from the original site of infection. Inflammatory-mediated injury to glycocalyx can be responsible for a number of specific clinical effects of sepsis, including acute kidney injury, respiratory failure, and hepatic dysfunction. Moreover, some markers of glycocalyx degradation, such as circulating levels of syndecan or selectins, may be used as markers of endothelial dysfunction and sepsis severity. Although a great deal of experimental evidence shows that alteration of glycocalyx is widely involved in endothelial damage caused by sepsis, therapeutic strategies aiming at preserving its integrity did not significantly improve the outcome of these patients.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700