Biomarkers and acute brain injuries: interest and limits
详细信息    查看全文
  • 作者:S茅gol猫ne Mrozek (14)
    Julien Dumurgier (15)
    Giuseppe Citerio (16)
    Alexandre Mebazaa (17)
    Thomas Geeraerts (14)

    14. Anesthesiology and Critical Care Department
    ; Hopital Purpan ; University Hospital of Toulouse ; University Toulouse 3 Paul Sabatier ; 1 place du Dr Baylac ; 31059 ; Toulouse ; France
    15. GH Saint Louis 鈥?Lariboisi猫re 鈥?Fernand Widal
    ; INSERM U942 ; University Paris Diderot ; Sorbonne Paris Cite ; CMRR Paris Nord-IDF ; F-75010 ; Paris ; France
    16. Neuroanaesthesia and Neurointensive Care Unit
    ; Anestesia e Rianimazione ; San Gerardo Hospital ; via Pergolesi 33 ; 20900 ; Monza ; Milan ; Italy
    17. Department of Anesthesia and Intensive Care
    ; INSERM U942 ; Paris Diderot University ; Lariboisi猫re Hospital ; 2 rue Ambroise Par茅 ; 75010 ; Paris ; France
  • 刊名:Critical Care
  • 出版年:2014
  • 出版时间:April 2014
  • 年:2014
  • 卷:18
  • 期:2
  • 全文大小:348 KB
  • 参考文献:1. Shinozaki, K, Oda, S, Sadahiro, T, Nakamura, M, Hirayama, Y, Abe, R, Tateishi, Y, Hattori, N, Shimada, T, Hirasawa, H (2009) S-100B and neuron-specific enolase as predictors of neurological outcome in patients after cardiac arrest and return of spontaneous circulation: a systematic review. Crit Care 13: pp. R121
    2. Fassbender, K, Hodapp, B, Rossol, S, Bertsch, T, Schmeck, J, Schutt, S, Fritzinger, M, Horn, P, Vajkoczy, P, Kreisel, S, Brunner, J, Schmiedek, P, Hennerici, M (2001) Inflammatory cytokines in subarachnoid haemorrhage: association with abnormal blood flow velocities in basal cerebral arteries. J Neurol Neurosurg Psychiatry 70: pp. 534-537
    3. Weiss, N, Sanchez-Pena, P, Roche, S, Beaudeux, JL, Colonne, C, Coriat, P, Puybasset, L (2006) Prognosis value of plasma S100B protein levels after subarachnoid aneurysmal hemorrhage. Anesthesiology 104: pp. 658-666
    4. Fountas, KN, Tasiou, A, Kapsalaki, EZ, Paterakis, KN, Grigorian, AA, Lee, GP, Robinson, JS (2009) Serum and cerebrospinal fluid C-reactive protein levels as predictors of vasospasm in aneurysmal subarachnoid hemorrhage, Clinical article. Neurosurg Focus 26: pp. E22
    5. Chou, SH, Feske, SK, Simmons, SL, Konigsberg, RG, Orzell, SC, Marckmann, A, Bourget, G, Bauer, DJ, De Jager, PL, Du, R, Arai, K, Lo, EH, Ning, MM (2011) Elevated peripheral neutrophils and matrix metalloproteinase 9 as biomarkers of functional outcome following subarachnoid hemorrhage. Transl Stroke Res 2: pp. 600-607
    6. Witkowska, AM, Borawska, MH, Socha, K, Kochanowicz, J, Mariak, Z, Konopka, M (2009) TNF-alpha and sICAM-1 in intracranial aneurismal rupture. Arch Immunol Ther Exp (Warsz) 57: pp. 137-140
    7. Kaynar, MY, Tanriverdi, T, Kafadar, AM, Kacira, T, Uzun, H, Aydin, S, Gumustas, K, Dirican, A, Kuday, C (2004) Detection of soluble intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in both cerebrospinal fluid and serum of patients after aneurysmal subarachnoid hemorrhage. J Neurosurg 101: pp. 1030-1036
    8. Kessler, IM, Pacheco, YG, Lozzi, SP, de Araujo, AS, Onishi, FJ, de Mello, PA (2005) Endothelin-1 levels in plasma and cerebrospinal fluid of patients with cerebral vasospasm after aneurysmal subarachnoid hemorrhage. Surg Neurol 64: pp. S1:2-S1:5
    9. Lewis, SB, Wolper, RA, Miralia, L, Yang, C, Shaw, G (2008) Detection of phosphorylated NF-H in the cerebrospinal fluid and blood of aneurysmal subarachnoid hemorrhage patients. J Cereb Blood Flow Metab 28: pp. 1261-1271
    10. Kay, A, Petzold, A, Kerr, M, Keir, G, Thompson, E, Nicoll, J (2003) Decreased cerebrospinal fluid apolipoprotein E after subarachnoid hemorrhage: correlation with injury severity and clinical outcome. Stroke 34: pp. 637-642
    11. Yarlagadda, S, Rajendran, P, Miss, JC, Banki, NM, Kopelnik, A, Wu, AH, Ko, N, Gelb, AW, Lawton, MT, Smith, WS, Young, WL, Zaroff, JG (2006) Cardiovascular predictors of in-patient mortality after subarachnoid hemorrhage. Neurocrit Care 5: pp. 102-107
    12. Nakagawa, I, Kurokawa, S, Nakase, H (2010) Hyponatremia is predictable in patients with aneurysmal subarachnoid hemorrhage 鈥?clinical significance of serum atrial natriuretic peptide. Acta Neurochir (Wien) 152: pp. 2147-2152
    13. McGirt, MJ, Lynch, JR, Blessing, R, Warner, DS, Friedman, AH, Laskowitz, DT (2002) Serum von Willebrand factor, matrix metalloproteinase-9, and vascular endothelial growth factor levels predict the onset of cerebral vasospasm after aneurysmal subarachnoid hemorrhage. Neurosurgery 51: pp. 1128-1134
    14. Fergusen, S, Macdonald, RL (2007) Predictors of cerebral infarction in patients with aneurysmal subarachnoid hemorrhage. Neurosurgery 60: pp. 658-667
    15. Rosengart, AJ, Schultheiss, KE, Tolentino, J, Macdonald, RL (2007) Prognostic factors for outcome in patients with aneurysmal subarachnoid hemorrhage. Stroke 38: pp. 2315-2321
    16. Liszczak, TM, Varsos, VG, Black, PM, Kistler, JP, Zervas, NT (1983) Cerebral arterial constriction after experimental subarachnoid hemorrhage is associated with blood components within the arterial wall. J Neurosurg 58: pp. 18-26
    17. Takemae, T, Branson, PJ, Alksne, JF (1984) Intimal proliferation of cerebral arteries after subarachnoid blood injection in pigs. J Neurosurg 61: pp. 494-500
    18. Macdonald, RL, Pluta, RM, Zhang, JH (2007) Cerebral vasospasm after subarachnoid hemorrhage: the emerging revolution. Nat Clin Pract Neurol 3: pp. 256-263
    19. Dhar, R, Diringer, MN (2008) The burden of the systemic inflammatory response predicts vasospasm and outcome after subarachnoid hemorrhage. Neurocrit Care 8: pp. 404-412
    20. Lad, SP, Hegen, H, Gupta, G, Deisenhammer, F, Steinberg, GK (2012) Proteomic biomarker discovery in cerebrospinal fluid for cerebral vasospasm following subarachnoid hemorrhage. J Stroke Cerebrovasc Dis 21: pp. 30-41
    21. Fassbender, K, Ries, S, Schminke, U, Schneider, S, Hennerici, M (1996) Inflammatory cytokines in CSF in bacterial meningitis: association with altered blood flow velocities in basal cerebral arteries. J Neurol Neurosurg Psychiatry 61: pp. 57-61
    22. Peterson, JW, Kwun, BD, Teramura, A, Hackett, JD, Morgan, JA, Nishizawa, S, Bun, T, Zervas, NT (1989) Immunological reaction against the aging human subarachnoid erythrocyte, A model for the onset of cerebral vasospasm after subarachnoid hemorrhage. J Neurosurg 71: pp. 718-726
    23. Kasuya, H, Shimizu, T (1989) Activated complement components C3a and C4a in cerebrospinal fluid and plasma following subarachnoid hemorrhage. J Neurosurg 71: pp. 741-746
    24. Schoch, B, Regel, JP, Wichert, M, Gasser, T, Volbracht, L, Stolke, D (2007) Analysis of intrathecal interleukin-6 as a potential predictive factor for vasospasm in subarachnoid hemorrhage. Neurosurgery 60: pp. 828-836
    25. Sarrafzadeh, A, Schlenk, F, Gericke, C, Vajkoczy, P (2010) Relevance of cerebral interleukin-6 after aneurysmal subarachnoid hemorrhage. Neurocrit Care 13: pp. 339-346
    26. Levin, ER, Gardner, DG, Samson, WK (1998) Natriuretic peptides. N Engl J Med 339: pp. 321-328
    27. Taub, PR, Fields, JD, Wu, AH, Miss, JC, Lawton, MT, Smith, WS, Young, WL, Zaroff, JG, Ko, NU (2011) Elevated BNP is associated with vasospasm-independent cerebral infarction following aneurysmal subarachnoid hemorrhage. Neurocrit Care 15: pp. 13-18
    28. Zakynthinos, E, Kiropoulos, T, Gourgoulianis, K, Filippatos, G (2008) Diagnostic and prognostic impact of brain natriuretic peptide in cardiac and noncardiac diseases. Heart Lung 37: pp. 275-285
    29. de Bold, AJ (2009) Cardiac natriuretic peptides gene expression and secretion in inflammation. J Investig Med 57: pp. 29-32
    30. Berendes, E, Walter, M, Cullen, P, Prien, T, Van Aken, H, Horsthemke, J, Schulte, M, von Wild, K, Scherer, R (1997) Secretion of brain natriuretic peptide in patients with aneurysmal subarachnoid haemorrhage. Lancet 349: pp. 245-249
    31. Tomida, M, Muraki, M, Uemura, K, Yamasaki, K (1998) Plasma concentrations of brain natriuretic peptide in patients with subarachnoid hemorrhage. Stroke 29: pp. 1584-1587
    32. Sviri, GE, Shik, V, Raz, B, Soustiel, JF (2003) Role of brain natriuretic peptide in cerebral vasospasm. Acta Neurochir (Wien) 145: pp. 851-860
    33. Wysocki, SJ, Zheng, MH, Smith, A, Norman, PE (1998) Vascular endothelial growth factor (VEGF) expression during arterial repair in the pig. Eur J Vasc Endovasc Surg 15: pp. 225-230
    34. Martin, J (2000) Learning from vascular remodelling. Clin Exp Allergy 30: pp. 33-36
    35. Bergers, G, Brekken, R, McMahon, G, Vu, TH, Itoh, T, Tamaki, K, Tanzawa, K, Thorpe, P, Itohara, S, Werb, Z, Hanahan, D (2000) Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2: pp. 737-744
    36. Zempo, N, Koyama, N, Kenagy, RD, Lea, HJ, Clowes, AW (1996) Regulation of vascular smooth muscle cell migration and proliferation in vitro and in injured rat arteries by a synthetic matrix metalloproteinase inhibitor. Arterioscler Thromb Vasc Biol 16: pp. 28-33
    37. Adner, M, Jansen, I, Edvinsson, L (1994) Endothelin-A receptors mediate contraction in human cerebral, meningeal and temporal arteries. J Auton Nerv Syst 49: pp. S117-S121
    38. Suzuki, K, Meguro, K, Sakurai, T, Saitoh, Y, Takeuchi, S, Nose, T (2000) Endothelin-1 concentration increases in the cerebrospinal fluid in cerebral vasospasm caused by subarachnoid hemorrhage. Surg Neurol 53: pp. 131-135
    39. Kastner, S, Oertel, MF, Scharbrodt, W, Krause, M, Boker, DK, Deinsberger, W (2005) Endothelin-1 in plasma, cisternal CSF and microdialysate following aneurysmal SAH. Acta Neurochir (Wien) 147: pp. 1271-1279
    40. Mascia, L, Fedorko, L, Stewart, DJ, Mohamed, F, TerBrugge, K, Ranieri, VM, Wallace, MC (2001) Temporal relationship between endothelin-1 concentrations and cerebral vasospasm in patients with aneurysmal subarachnoid hemorrhage. Stroke 32: pp. 1185-1190
    41. Zanier, ER, Refai, D, Zipfel, GJ, Zoerle, T, Longhi, L, Esparza, TJ, Spinner, ML, Bateman, RJ, Brody, DL, Stocchetti, N (2011) Neurofilament light chain levels in ventricular cerebrospinal fluid after acute aneurysmal subarachnoid haemorrhage. J Neurol Neurosurg Psychiatry 82: pp. 157-159
    42. Guo, J, Shi, Z, Yang, K, Tian, JH, Jiang, L (2012) Endothelin receptor antagonists for subarachnoid hemorrhage. Cochrane Database Syst Rev 9: pp. CD008354
    43. Sills, AK, Clatterbuck, RE, Thompson, RC, Cohen, PL, Tamargo, RJ (1997) Endothelial cell expression of intercellular adhesion molecule 1 in experimental posthemorrhagic vasospasm. Neurosurgery 41: pp. 453-460
    44. Nissen, JJ, Mantle, D, Gregson, B, Mendelow, AD (2001) Serum concentration of adhesion molecules in patients with delayed ischaemic neurological deficit after aneurysmal subarachnoid haemorrhage: the immunoglobulin and selectin superfamilies. J Neurol Neurosurg Psychiatry 71: pp. 329-333
    45. Oshiro, EM, Hoffman, PA, Dietsch, GN, Watts, MC, Pardoll, DM, Tamargo, RJ (1997) Inhibition of experimental vasospasm with anti-intercellular adhesion molecule-1 monoclonal antibody in rats. Stroke 28: pp. 2031-2037
    46. Rothoerl, RD, Schebesch, KM, Kubitza, M, Woertgen, C, Brawanski, A, Pina, AL (2006) ICAM-1 and VCAM-1 expression following aneurysmal subarachnoid hemorrhage and their possible role in the pathophysiology of subsequent ischemic deficits. Cerebrovasc Dis 22: pp. 143-149
    47. Van Geel, WJ, Rosengren, LE, Verbeek, MM (2005) An enzyme immunoassay to quantify neurofilament light chain in cerebrospinal fluid. J Immunol Methods 296: pp. 179-185
    48. Petzold, A, Shaw, G (2007) Comparison of two ELISA methods for measuring levels of the phosphorylated neurofilament heavy chain. J Immunol Methods 319: pp. 34-40
    49. Petzold, A, Keir, G, Kay, A, Kerr, M, Thompson, EJ (2006) Axonal damage and outcome in subarachnoid haemorrhage. J Neurol Neurosurg Psychiatry 77: pp. 753-759
    50. Pike, BR, Flint, J, Dave, JR, Lu, XC, Wang, KK, Tortella, FC, Hayes, RL (2004) Accumulation of calpain and caspase-3 proteolytic fragments of brain-derived alphaII-spectrin in cerebral spinal fluid after middle cerebral artery occlusion in rats. J Cereb Blood Flow Metab 24: pp. 98-106
    51. Lewis, SB, Velat, GJ, Miralia, L, Papa, L, Aikman, JM, Wolper, RA, Firment, CS, Liu, MC, Pineda, JA, Wang, KK, Hayes, RL (2007) Alpha-II spectrin breakdown products in aneurysmal subarachnoid hemorrhage: a novel biomarker of proteolytic injury. J Neurosurg 107: pp. 792-796
    52. Donato, R (1986) S-100 proteins. Cell Calcium 7: pp. 123-145
    53. Rustandi, RR, Drohat, AC, Baldisseri, DM, Wilder, PT, Weber, DJ (1998) The Ca(2+)-dependent interaction of S100B(beta beta) with a peptide derived from p53. Biochemistry 37: pp. 1951-1960
    54. Moritz, S, Warnat, J, Bele, S, Graf, BM, Woertgen, C (2010) The prognostic value of NSE and S100B from serum and cerebrospinal fluid in patients with spontaneous subarachnoid hemorrhage. J Neurosurg Anesthesiol 22: pp. 21-31
    55. Siman, R, Giovannone, N, Toraskar, N, Frangos, S, Stein, SC, Levine, JM, Kumar, MA (2011) Evidence that a panel of neurodegeneration biomarkers predicts vasospasm, infarction, and outcome in aneurysmal subarachnoid hemorrhage. PLoS One 6: pp. e28938
    56. Goyal, A, Failla, MD, Niyonkuru, C, Amin, K, Fabio, A, Berger, RP, Wagner, AK (2013) S100b as a prognostic biomarker in outcome prediction for patients with severe traumatic brain injury. J Neurotrauma 30: pp. 946-957
    57. Pelinka, LE, Kroepfl, A, Leixnering, M, Buchinger, W, Raabe, A, Redl, H (2004) GFAP versus S100B in serum after traumatic brain injury: relationship to brain damage and outcome. J Neurotrauma 21: pp. 1553-1561
    58. Vos, PE, Lamers, KJ, Hendriks, JC, van Haaren, M, Beems, T, Zimmerman, C, van Geel, W, de Reus, H, Biert, J, Verbeek, MM (2004) Glial and neuronal proteins in serum predict outcome after severe traumatic brain injury. Neurology 62: pp. 1303-1310
    59. Guzel, A, Er, U, Tatli, M, Aluclu, U, Ozkan, U, Duzenli, Y, Satici, O, Guzel, E, Kemaloglu, S, Ceviz, A, Kaplan, A (2008) Serum neuron-specific enolase as a predictor of short-term outcome and its correlation with Glasgow Coma Scale in traumatic brain injury. Neurosurg Rev 31: pp. 439-444
    60. Papa, L, Akinyi, L, Liu, MC, Pineda, JA, Tepas, JJ, Oli, MW, Zheng, W, Robinson, G, Robicsek, SA, Gabrielli, A, Heaton, SC, Hannay, HJ, Demery, JA, Brophy, GM, Layon, J, Robertson, CS, Hayes, RL, Wang, KK (2010) Ubiquitin C-terminal hydrolase is a novel biomarker in humans for severe traumatic brain injury. Crit Care Med 38: pp. 138-144
    61. Brophy, GM, Mondello, S, Papa, L, Robicsek, SA, Gabrielli, A, Tepas, J, Buki, A, Robertson, C, Tortella, FC, Hayes, RL, Wang, KK (2011) Biokinetic analysis of ubiquitin C-terminal hydrolase-L1 (UCH-L1) in severe traumatic brain injury patient biofluids. J Neurotrauma 28: pp. 861-870
    62. Mondello, S, Akinyi, L, Buki, A, Robicsek, S, Gabrielli, A, Tepas, J, Papa, L, Brophy, GM, Tortella, F, Hayes, RL, Wang, KK (2012) Clinical utility of serum levels of ubiquitin C-terminal hydrolase as a biomarker for severe traumatic brain injury. Neurosurgery 70: pp. 666-675
    63. Thomas, DG, Palfreyman, JW, Ratcliffe, JG (1978) Serum-myelin-basic-protein assay in diagnosis and prognosis of patients with head injury. Lancet 1: pp. 113-115
    64. Yamazaki, Y, Yada, K, Morii, S, Kitahara, T, Ohwada, T (1995) Diagnostic significance of serum neuron-specific enolase and myelin basic protein assay in patients with acute head injury. Surg Neurol 43: pp. 267-270
    65. Liliang, PC, Liang, CL, Weng, HC, Lu, K, Wang, KW, Chen, HJ, Chuang, JH (2010) Tau proteins in serum predict outcome after severe traumatic brain injury. J Surg Res 160: pp. 302-307
    66. Pineda, JA, Lewis, SB, Valadka, AB, Papa, L, Hannay, HJ, Heaton, SC, Demery, JA, Liu, MC, Aikman, JM, Akle, V, Brophy, GM, Tepas, JJ, Wang, KK, Robertson, CS, Hayes, RL (2007) Clinical significance of alphaII-spectrin breakdown products in cerebrospinal fluid after severe traumatic brain injury. J Neurotrauma 24: pp. 354-366
    67. Mondello, S, Robicsek, SA, Gabrielli, A, Brophy, GM, Papa, L, Tepas, J, Robertson, C, Buki, A, Scharf, D, Jixiang, M, Akinyi, L, Muller, U, Wang, KK, Hayes, RL (2010) alphaII-spectrin breakdown products (SBDPs): diagnosis and outcome in severe traumatic brain injury patients. J Neurotrauma 27: pp. 1203-1213
    68. Ost, M, Nylen, K, Csajbok, L, Ohrfelt, AO, Tullberg, M, Wikkelso, C, Nellgard, P, Rosengren, L, Blennow, K, Nellgard, B (2006) Initial CSF total tau correlates with 1-year outcome in patients with traumatic brain injury. Neurology 67: pp. 1600-1604
    69. Zetterberg, H, Smith, DH, Blennow, K (2013) Biomarkers of mild traumatic brain injury in cerebrospinal fluid and blood. Nat Rev Neurol 9: pp. 201-210
    70. Ciccarelli, R, Di Iorio, P, Bruno, V, Battaglia, G, D'Alimonte, I, D'Onofrio, M, Nicoletti, F, Caciagli, F (1999) Activation of A(1) adenosine or mGlu3 metabotropic glutamate receptors enhances the release of nerve growth factor and S-100beta protein from cultured astrocytes. Glia 27: pp. 275-281
    71. Whitaker-Azmitia, PM, Murphy, R, Azmitia, EC (1990) Stimulation of astroglial 5-HT1A receptors releases the serotonergic growth factor, protein S-100, and alters astroglial morphology. Brain Res 528: pp. 155-158
    72. Suzuki, F, Kato, K, Kato, T, Ogasawara, N (1987) S-100 protein in clonal astroglioma cells is released by adrenocorticotropic hormone and corticotropin-like intermediate-lobe peptide. J Neurochem 49: pp. 1557-1563
    73. Elting, JW, de Jager, AE, Teelken, AW, Schaaf, MJ, Maurits, NM, van der Naalt, J, Sibinga, CT, Sulter, GA, De Keyser, J (2000) Comparison of serum S-100 protein levels following stroke and traumatic brain injury. J Neurol Sci 181: pp. 104-110
    74. Muller, K, Townend, W, Biasca, N, Unden, J, Waterloo, K, Romner, B, Ingebrigtsen, T (2007) S100B serum level predicts computed tomography findings after minor head injury. J Trauma 62: pp. 1452-1456
    75. Zongo, D, Ribereau-Gayon, R, Masson, F, Laborey, M, Contrand, B, Salmi, LR, Montaudon, D, Beaudeux, JL, Meurin, A, Dousset, V, Loiseau, H, Lagarde, E (2012) S100-B protein as a screening tool for the early assessment of minor head injury. Ann Emerg Med 59: pp. 209-218
    76. Rothoerl, RD, Woertgen, C (2001) High serum S100B levels for trauma patients without head injuries. Neurosurgery 49: pp. 1490-1491
    77. Marangos, PJ, Schmechel, DE (1987) Neuron specific enolase, a clinically useful marker for neurons and neuroendocrine cells. Annu Rev Neurosci 10: pp. 269-295
    78. Ross, SA, Cunningham, RT, Johnston, CF, Rowlands, BJ (1996) Neuron-specific enolase as an aid to outcome prediction in head injury. Br J Neurosurg 10: pp. 471-476
    79. Pelinka, LE, Hertz, H, Mauritz, W, Harada, N, Jafarmadar, M, Albrecht, M, Redl, H, Bahrami, S (2005) Nonspecific increase of systemic neuron-specific enolase after trauma: clinical and experimental findings. Shock 24: pp. 119-123
    80. Jackson, P, Thompson, RJ (1981) The demonstration of new human brain-specific proteins by high-resolution two-dimensional polyacrylamide gel electrophoresis. J Neurol Sci 49: pp. 429-438
    81. Tongaonkar, P, Chen, L, Lambertson, D, Ko, B, Madura, K (2000) Evidence for an interaction between ubiquitin-conjugating enzymes and the 26S proteasome. Mol Cell Biol 20: pp. 4691-4698
    82. Papa, L, Lewis, LM, Silvestri, S, Falk, JL, Giordano, P, Brophy, GM, Demery, JA, Liu, MC, Mo, J, Akinyi, L, Mondello, S, Schmid, K, Robertson, CS, Tortella, FC, Hayes, RL, Wang, KK (2012) Serum levels of ubiquitin C-terminal hydrolase distinguish mild traumatic brain injury from trauma controls and are elevated in mild and moderate traumatic brain injury patients with intracranial lesions and neurosurgical intervention. J Trauma Acute Care Surg 72: pp. 335-1344
    83. Missler, U, Wiesmann, M, Wittmann, G, Magerkurth, O, Hagenstrom, H (1999) Measurement of glial fibrillary acidic protein in human blood: analytical method and preliminary clinical results. Clin Chem 45: pp. 138-141
    84. Lumpkins, KM, Bochicchio, GV, Keledjian, K, Simard, JM, McCunn, M, Scalea, T (2008) Glial fibrillary acidic protein is highly correlated with brain injury. J Trauma 65: pp. 778-782
    85. Pelinka, LE, Kroepfl, A, Schmidhammer, R, Krenn, M, Buchinger, W, Redl, H, Raabe, A (2004) Glial fibrillary acidic protein in serum after traumatic brain injury and multiple trauma. J Trauma 57: pp. 1006-1012
    86. Papa, L, Lewis, LM, Falk, JL, Zhang, Z, Silvestri, S, Giordano, P, Brophy, GM, Demery, JA, Dixit, NK, Ferguson, I, Liu, MC, Mo, J, Akinyi, L, Schmid, K, Mondello, S, Robertson, CS, Tortella, FC, Hayes, RL, Wang, KK (2012) Elevated levels of serum glial fibrillary acidic protein breakdown products in mild and moderate traumatic brain injury are associated with intracranial lesions and neurosurgical intervention. Ann Emerg Med 59: pp. 471-483
    87. Okonkwo, DO, Yue, JK, Puccio, AM, Panczykowski, DM, Inoue, T, McMahon, PJ, Sorani, MD, Yuh, EL, Lingsma, HF, Maas, AI, Valadka, AB, Manley, GT, Casey, SS, Cheong, M, Cooper, SR, Dams-O'Connor, K, Gordon, WA, Hricik, AJ, Hochberger, K, Menon, DK, Mukherjee, P, Sinha, TK, Schnyer, DM, Vassar, MJ (2013) GFAP-BDP as an acute diagnostic marker in traumatic brain injury: results from the prospective transforming research and clinical knowledge in traumatic brain injury study. J Neurotrauma 30: pp. 1490-1497
    88. Honda, M, Tsuruta, R, Kaneko, T, Kasaoka, S, Yagi, T, Todani, M, Fujita, M, Izumi, T, Maekawa, T (2010) Serum glial fibrillary acidic protein is a highly specific biomarker for traumatic brain injury in humans compared with S-100B and neuron-specific enolase. J Trauma 69: pp. 104-109
    89. Jauch, EC, Lindsell, C, Broderick, J, Fagan, SC, Tilley, BC, Levine, SR (2006) Association of serial biochemical markers with acute ischemic stroke: the National Institute of Neurological Disorders and Stroke recombinant tissue plasminogen activator Stroke Study. Stroke 37: pp. 2508-2513
    90. Foerch, C, Singer, OC, Neumann-Haefelin, T, Du Mesnil De Rochemont, R, Steinmetz, H, Sitzer, M (2005) Evaluation of serum S100B as a surrogate marker for long-term outcome and infarct volume in acute middle cerebral artery infarction. Arch Neurol 62: pp. 1130-1134
    91. Dassan, P, Keir, G, Brown, MM (2009) Criteria for a clinically informative serum biomarker in acute ischaemic stroke: a review of S100B. Cerebrovasc Dis 27: pp. 295-302
    92. Jonsson, H, Johnsson, P, Birch-Iensen, M, Alling, C, Westaby, S, Blomquist, S (2001) S100B as a predictor of size and outcome of stroke after cardiac surgery. Ann Thorac Surg 71: pp. 1433-1437
    93. Ahmad, O, Wardlaw, J, Whiteley, WN (2012) Correlation of levels of neuronal and glial markers with radiological measures of infarct volume in ischaemic stroke: a systematic review. Cerebrovasc Dis 33: pp. 47-54
    94. Hill, MD, Jackowski, G, Bayer, N, Lawrence, M, Jaeschke, R (2000) Biochemical markers in acute ischemic stroke. CMAJ 162: pp. 1139-1140
    95. Foerch, C, Otto, B, Singer, OC, Neumann-Haefelin, T, Yan, B, Berkefeld, J, Steinmetz, H, Sitzer, M (2004) Serum S100B predicts a malignant course of infarction in patients with acute middle cerebral artery occlusion. Stroke 35: pp. 2160-2164
    96. Foerch, C, Wunderlich, MT, Dvorak, F, Humpich, M, Kahles, T, Goertler, M, Alvarez-Sabin, J, Wallesch, CW, Molina, CA, Steinmetz, H, Sitzer, M, Montaner, J (2007) Elevated serum S100B levels indicate a higher risk of hemorrhagic transformation after thrombolytic therapy in acute stroke. Stroke 38: pp. 2491-2495
    97. Kazmierski, R, Michalak, S, Wencel-Warot, A, Nowinski, WL (2012) Serum tight-junction proteins predict hemorrhagic transformation in ischemic stroke patients. Neurology 79: pp. 1677-1685
    98. Saenger, AK, Christenson, RH (2010) Stroke biomarkers: progress and challenges for diagnosis, prognosis, differentiation, and treatment. Clin Chem 56: pp. 21-33
    99. Yoo, JH, Lee, SC (2001) Elevated levels of plasma homocyst(e)ine and asymmetric dimethylarginine in elderly patients with stroke. Atherosclerosis 158: pp. 425-430
    100. Leong, T, Zylberstein, D, Graham, I, Lissner, L, Ward, D, Fogarty, J, Bengtsson, C, Bjorkelund, C, Thelle, D (2008) Asymmetric dimethylarginine independently predicts fatal and nonfatal myocardial infarction and stroke in women: 24-year follow-up of the population study of women in Gothenburg. Arterioscler Thromb Vasc Biol 28: pp. 961-967
    101. Pikula, A, Boger, RH, Beiser, AS, Maas, R, DeCarli, C, Schwedhelm, E, Himali, JJ, Schulze, F, Au, R, Kelly-Hayes, M, Kase, CS, Vasan, RS, Wolf, PA, Seshadri, S (2009) Association of plasma ADMA levels with MRI markers of vascular brain injury: Framingham offspring study. Stroke 40: pp. 2959-2964
    102. Clark, AW, Krekoski, CA, Bou, SS, Chapman, KR, Edwards, DR (1997) Increased gelatinase A (MMP-2) and gelatinase B (MMP-9) activities in human brain after focal ischemia. Neurosci Lett 238: pp. 53-56
    103. Alvarez-Sabin, J, Delgado, P, Abilleira, S, Molina, CA, Arenillas, J, Ribo, M, Santamarina, E, Quintana, M, Monasterio, J, Montaner, J (2004) Temporal profile of matrix metalloproteinases and their inhibitors after spontaneous intracerebral hemorrhage: relationship to clinical and radiological outcome. Stroke 35: pp. 1316-1322
    104. Montaner, J, Alvarez-Sabin, J, Molina, C, Angles, A, Abilleira, S, Arenillas, J, Gonzalez, MA, Monasterio, J (2001) Matrix metalloproteinase expression after human cardioembolic stroke: temporal profile and relation to neurological impairment. Stroke 32: pp. 1759-1766
    105. Montaner, J, Alvarez-Sabin, J, Molina, CA, Angles, A, Abilleira, S, Arenillas, J, Monasterio, J (2001) Matrix metalloproteinase expression is related to hemorrhagic transformation after cardioembolic stroke. Stroke 32: pp. 2762-2767
    106. Montaner, J, Molina, CA, Monasterio, J, Abilleira, S, Arenillas, JF, Ribo, M, Quintana, M, Alvarez-Sabin, J (2003) Matrix metalloproteinase-9 pretreatment level predicts intracranial hemorrhagic complications after thrombolysis in human stroke. Circulation 107: pp. 598-603
    107. Rosell, A, Alvarez-Sabin, J, Arenillas, JF, Rovira, A, Delgado, P, Fernandez-Cadenas, I, Penalba, A, Molina, CA, Montaner, J (2005) A matrix metalloproteinase protein array reveals a strong relation between MMP-9 and MMP-13 with diffusion-weighted image lesion increase in human stroke. Stroke 36: pp. 1415-1420
    108. Gappoeva, MU, Izykenova, GA, Granstrem, OK, Dambinova, SA (2003) Expression of NMDA neuroreceptors in experimental ischemia. Biochemistry (Mosc) 68: pp. 696-702
    109. Dambinova, SA, Bettermann, K, Glynn, T, Tews, M, Olson, D, Weissman, JD, Sowell, RL (2012) Diagnostic potential of the NMDA receptor peptide assay for acute ischemic stroke. PLoS One 7: pp. e42362
    110. Dambinova, SA, Khounteev, GA, Izykenova, GA, Zavolokov, IG, Ilyukhina, AY, Skoromets, AA (2003) Blood test detecting autoantibodies to N-methyl-D-aspartate neuroreceptors for evaluation of patients with transient ischemic attack and stroke. Clin Chem 49: pp. 1752-1762
    111. Bokesch, PM, Izykenova, GA, Justice, JB, Easley, KA, Dambinova, SA (2006) NMDA receptor antibodies predict adverse neurological outcome after cardiac surgery in high-risk patients. Stroke 37: pp. 1432-1436
    112. Herrmann, M, Vos, P, Wunderlich, MT, de Bruijn, CH, Lamers, KJ (2000) Release of glial tissue-specific proteins after acute stroke: a comparative analysis of serum concentrations of protein S-100B and glial fibrillary acidic protein. Stroke 31: pp. 2670-2677
    113. Foerch, C, Curdt, I, Yan, B, Dvorak, F, Hermans, M, Berkefeld, J, Raabe, A, Neumann-Haefelin, T, Steinmetz, H, Sitzer, M (2006) Serum glial fibrillary acidic protein as a biomarker for intracerebral haemorrhage in patients with acute stroke. J Neurol Neurosurg Psychiatry 77: pp. 181-184
    114. Dvorak, F, Haberer, I, Sitzer, M, Foerch, C (2009) Characterisation of the diagnostic window of serum glial fibrillary acidic protein for the differentiation of intracerebral haemorrhage and ischaemic stroke. Cerebrovasc Dis 27: pp. 37-41
    115. Unden, J, Strandberg, K, Malm, J, Campbell, E, Rosengren, L, Stenflo, J, Norrving, B, Romner, B, Lindgren, A, Andsberg, G (2009) Explorative investigation of biomarkers of brain damage and coagulation system activation in clinical stroke differentiation. J Neurol 256: pp. 72-77
    116. Ernst, A, Suhr, J, Kohrle, J, Bergmann, A (2008) Detection of stable N-terminal protachykinin A immunoreactivity in human plasma and cerebrospinal fluid. Peptides 29: pp. 1201-1206
    117. Doehner, W, von Haehling, S, Suhr, J, Ebner, N, Schuster, A, Nagel, E, Melms, A, Wurster, T, Stellos, K, Gawaz, M, Bigalke, B (2012) Elevated plasma levels of neuropeptide proenkephalin a predict mortality and functional outcome in ischemic stroke. J Am Coll Cardiol 60: pp. 346-354
    118. Reynolds, MA, Kirchick, HJ, Dahlen, JR, Anderberg, JM, McPherson, PH, Nakamura, KK, Laskowitz, DT, Valkirs, GE, Buechler, KF (2003) Early biomarkers of stroke. Clin Chem 49: pp. 1733-1739
    119. Laskowitz, DT, Blessing, R, Floyd, J, White, WD, Lynch, JR (2005) Panel of biomarkers predicts stroke. Ann N Y Acad Sci 1053: pp. 30
    120. Laskowitz, DT, Kasner, SE, Saver, J, Remmel, KS, Jauch, EC (2009) Clinical usefulness of a biomarker-based diagnostic test for acute stroke: the Biomarker Rapid Assessment in Ischemic Injury (BRAIN) study. Stroke 40: pp. 77-85
    121. Montaner, J, Mendioroz, M, Ribo, M, Delgado, P, Quintana, M, Penalba, A, Chacon, P, Molina, C, Fernandez-Cadenas, I, Rosell, A, Alvarez-Sabin, J (2011) A panel of biomarkers including caspase-3 and D-dimer may differentiate acute stroke from stroke-mimicking conditions in the emergency department. J Intern Med 270: pp. 166-174
    122. Doehner, W (2012) Diagnostic biomarkers in cardiovascular disease: the proteomics approach. Eur Heart J 33: pp. 2249-2251
  • 刊物主题:Intensive / Critical Care Medicine; Emergency Medicine;
  • 出版者:BioMed Central
  • ISSN:1364-8535
文摘
For patients presenting with acute brain injury (such as traumatic brain injury, subarachnoid haemorrhage and stroke), the diagnosis and identification of intracerebral lesions and evaluation of the severity, prognosis and treatment efficacy can be challenging. The complexity and heterogeneity of lesions after brain injury are most probably responsible for this difficulty. Patients with apparently comparable brain lesions on imaging may have different neurological outcomes or responses to therapy. In recent years, plasmatic and cerebrospinal fluid biomarkers have emerged as possible tools to distinguish between the different pathophysiological processes. This review aims to summarise the plasmatic and cerebrospinal fluid biomarkers evaluated in subarachnoid haemorrhage, traumatic brain injury and stroke, and to clarify their related interests and limits for diagnosis and prognosis. For subarachnoid haemorrhage, particular interest has been focused on the biomarkers used to predict vasospasm and cerebral ischaemia. The efficacy of biomarkers in predicting the severity and outcome of traumatic brain injury has been stressed. The very early diagnostic performance of biomarkers and their ability to discriminate ischaemic from haemorrhagic stroke were studied.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700