Optogenetic activation of brainstem serotonergic neurons induces persistent pain sensitization
详细信息    查看全文
  • 作者:You-Qing Cai (1)
    Wei Wang (1)
    Yuan-Yuan Hou (1)
    Zhizhong Z Pan (1)

    1. Department of Anesthesiology and Pain Medicine
    ; The University of Texas MD Anderson Cancer Center ; 1515 Holcombe Boulevard ; Houston ; Texas ; 77030 ; USA
  • 关键词:Serotonin ; 5 ; HT ; Optogenetic ; Descending facilitation ; Rostral ventromedial medulla ; Pain
  • 刊名:Molecular Pain
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:10
  • 期:1
  • 全文大小:3,339 KB
  • 参考文献:1. Basbaum, AI, Bautista, DM, Scherrer, G, Julius, D (2009) Cellular and molecular mechanisms of pain. Cell 139: pp. 267-284 CrossRef
    2. Fields, H (2004) State-dependent opioid control of pain. Nat Rev Neurosci 5: pp. 565-575 CrossRef
    3. Millan, MJ (2002) Descending control of pain. Prog Neurobiol 66: pp. 355-474 CrossRef
    4. Fields, HL, Heinricher, MM, Mason, P (1991) Neurotransmitters in nociceptive modulatory circuits. Annu Rev Neurosci 14: pp. 219-245 CrossRef
    5. Porreca, F, Ossipov, MH, Gebhart, GF (2002) Chronic pain and medullary descending facilitation. Trends Neurosci 25: pp. 319-325 CrossRef
    6. Gebhart, GF (2004) Descending modulation of pain. Neurosci Biobehav Rev 27: pp. 729-737 CrossRef
    7. Vanegas, H, Schaible, HG (2004) Descending control of persistent pain: inhibitory or facilitatory?. Brain Res Brain Res Rev 46: pp. 295-309 CrossRef
    8. Robinson, DA, Calejesan, AA, Wei, F, Gebhart, GF, Zhuo, M (2004) Endogenous facilitation: from molecular mechanisms to persistent pain. Curr Neurovasc Res 1: pp. 11-20 CrossRef
    9. Buhler, AV, Choi, J, Proudfit, HK, Gebhart, GF (2005) Neurotensin activation of the NTR1 on spinally-projecting serotonergic neurons in the rostral ventromedial medulla is antinociceptive. Pain 114: pp. 285-294 CrossRef
    10. Calejesan, AA, Ch鈥檃ng, MH, Zhuo, M (1998) Spinal serotonergic receptors mediate facilitation of a nociceptive reflex by subcutaneous formalin injection into the hindpaw in rats. Brain Res 798: pp. 46-54 CrossRef
    11. Hammond, DL, Yaksh, TL (1984) Antagonism of stimulation-produced antinociception by intrathecal administration of methysergide or phentolamine. Brain Res 298: pp. 329-337 CrossRef
    12. Wei, F, Dubner, R, Ren, K (1999) Nucleus reticularis gigantocellularis and nucleus raphe magnus in the brain stem exert opposite effects on behavioral hyperalgesia and spinal Fos protein expression after peripheral inflammation. Pain 80: pp. 127-141 CrossRef
    13. Zhao, ZQ, Chiechio, S, Sun, YG, Zhang, KH, Zhao, CS, Scott, M, Johnson, RL, Deneris, ES, Renner, KJ, Gereau, RW, Chen, ZF (2007) Mice lacking central serotonergic neurons show enhanced inflammatory pain and an impaired analgesic response to antidepressant drugs. J Neurosci 27: pp. 6045-6053 CrossRef
    14. Kim, YS, Chu, Y, Han, L, Li, M, Li, Z, Lavinka, PC, Sun, S, Tang, Z, Park, K, Caterina, MJ, Ren, K, Dubner, R, Wei, F, Dong, X (2014) Central Terminal Sensitization of TRPV1 by Descending Serotonergic Facilitation Modulates Chronic Pain. Neuron 81: pp. 873-887 CrossRef
    15. Wei, F, Dubner, R, Zou, S, Ren, K, Bai, G, Wei, D, Guo, W (2010) Molecular depletion of descending serotonin unmasks its novel facilitatory role in the development of persistent pain. J Neurosci 30: pp. 8624-8636 CrossRef
    16. Yizhar, O, Fenno, LE, Davidson, TJ, Mogri, M, Deisseroth, K (2011) Optogenetics in neural systems. Neuron 71: pp. 9-34 CrossRef
    17. Liu, X, Ramirez, S, Pang, PT, Puryear, CB, Govindarajan, A, Deisseroth, K, Tonegawa, S (2012) Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 484: pp. 381-385 CrossRef
    18. Tye, KM, Prakash, R, Kim, SY, Fenno, LE, Grosenick, L, Zarabi, H, Thompson, KR, Gradinaru, V, Ramakrishnan, C, Deisseroth, K (2011) Amygdala circuitry mediating reversible and bidirectional control of anxiety. Nature 471: pp. 358-362 CrossRef
    19. Tye, KM, Deisseroth, K (2012) Optogenetic investigation of neural circuits underlying brain disease in animal models. Nat Rev Neurosci 13: pp. 251-266 CrossRef
    20. Ji, G, Neugebauer, V (2012) Modulation of medial prefrontal cortical activity using in vivo recordings and optogenetics. Mol Brain 5: pp. 36 CrossRef
    21. Daou, I, Tuttle, AH, Longo, G, Wieskopf, JS, Bonin, RP, Ase, AR, Wood, JN, De Koninck, Y, Ribeiro-da-Silva, A, Mogil, JS, Seguela, P (2013) Remote optogenetic activation and sensitization of pain pathways in freely moving mice. J Neurosci 33: pp. 18631-18640 CrossRef
    22. Crock, LW, Kolber, BJ, Morgan, CD, Sadler, KE, Vogt, SK, Bruchas, MR, Gereau, RW (2012) Central amygdala metabotropic glutamate receptor 5 in the modulation of visceral pain. J Neurosci 32: pp. 14217-14226 CrossRef
    23. Ito, H, Yanase, M, Yamashita, A, Kitabatake, C, Hamada, A, Suhara, Y, Narita, M, Ikegami, D, Sakai, H, Yamazaki, M (2013) Analysis of sleep disorders under pain using an optogenetic tool: possible involvement of the activation of dorsal raphe nucleus-serotonergic neurons. Mol Brain 6: pp. 59 CrossRef
    24. Zhao, S, Ting, JT, Atallah, HE, Qiu, L, Tan, J, Gloss, B, Augustine, GJ, Deisseroth, K, Luo, M, Graybiel, AM, Feng, G (2011) Cell type-specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function. Nat Methods 8: pp. 745-752 CrossRef
    25. Braz, JM, Basbaum, AI (2008) Genetically expressed transneuronal tracer reveals direct and indirect serotonergic descending control circuits. J Comp Neurol 507: pp. 1990-2003 CrossRef
    26. Braz, JM, Enquist, LW, Basbaum, AI (2009) Inputs to serotonergic neurons revealed by conditional viral transneuronal tracing. J Comp Neurol 514: pp. 145-160 CrossRef
    27. Rahman, W, Bauer, CS, Bannister, K, Vonsy, JL, Dolphin, AC, Dickenson, AH (2009) Descending serotonergic facilitation and the antinociceptive effects of pregabalin in a rat model of osteoarthritic pain. Mol Pain 5: pp. 45 CrossRef
    28. Okubo, M, Castro, A, Guo, W, Zou, S, Ren, K, Wei, F, Keller, A, Dubner, R (2013) Transition to persistent orofacial pain after nerve injury involves supraspinal serotonin mechanisms. J Neurosci 33: pp. 5152-5161 CrossRef
    29. Aimone, LD, Gebhart, GF (1986) Stimulation-produced spinal inhibition from the midbrain in the rat is mediated by an excitatory amino acid neurotransmitter in the medial medulla. J Neurosci 6: pp. 1803-1813
    30. Inase, M, Nakahama, H, Otsuki, T, Fang, JZ (1987) Analgesic effects of serotonin microinjection into nucleus raphe magnus and nucleus raphe dorsalis evaluated by the monosodium urate (MSU) tonic pain model in the rat. Brain Res 426: pp. 205-211 CrossRef
    31. Llewelyn, MB, Azami, J, Roberts, MH (1983) Effects of 5-hydroxytryptamine applied into nucleus raphe magnus on nociceptive thresholds and neuronal firing rate. Brain Res 258: pp. 59-68 CrossRef
    32. Marinelli, S, Vaughan, CW, Schnell, SA, Wessendorf, MW, Christie, MJ (2002) Rostral ventromedial medulla neurons that project to the spinal cord express multiple opioid receptor phenotypes. J Neurosci 22: pp. 10847-10855
    33. Wang, H, Wessendorf, MW (1999) Mu- and delta-opioid receptor mRNAs are expressed in spinally projecting serotonergic and nonserotonergic neurons of the rostral ventromedial medulla. J Comp Neurol 404: pp. 183-196 CrossRef
    34. Alhaider, AA, Lei, SZ, Wilcox, GL (1991) Spinal 5-HT3 receptor-mediated antinociception: possible release of GABA. J Neurosci 11: pp. 1881-1888
    35. Green, GM, Scarth, J, Dickenson, A (2000) An excitatory role for 5-HT in spinal inflammatory nociceptive transmission; state-dependent actions via dorsal horn 5-HT(3) receptors in the anaesthetized rat. Pain 89: pp. 81-88 CrossRef
    36. Gu, M, Miyoshi, K, Dubner, R, Guo, W, Zou, S, Ren, K, Noguchi, K, Wei, F (2011) Spinal 5-HT(3) receptor activation induces behavioral hypersensitivity via a neuronal-glial-neuronal signaling cascade. J Neurosci 31: pp. 12823-12836 CrossRef
    37. Kayser, V, Elfassi, IE, Aubel, B, Melfort, M, Julius, D, Gingrich, JA, Hamon, M, Bourgoin, S (2007) Mechanical, thermal and formalin-induced nociception is differentially altered in 5-HT1A-/-, 5-HT1B-/-, 5-HT2A-/-, 5-HT3A-/- and 5-HTT-/- knock-out male mice. Pain 130: pp. 235-248 CrossRef
    38. Oatway, MA, Chen, Y, Weaver, LC (2004) The 5-HT3 receptor facilitates at-level mechanical allodynia following spinal cord injury. Pain 110: pp. 259-268 CrossRef
    39. Paul, D, Yao, D, Zhu, P, Minor, LD, Garcia, MM (2001) 5-hydroxytryptamine3 (5-HT3) receptors mediate spinal 5-HT antinociception: an antisense approach. J Pharmacol Exp Ther 298: pp. 674-678
    40. Svensson, CI, Tran, TK, Fitzsimmons, B, Yaksh, TL, Hua, XY (2006) Descending serotonergic facilitation of spinal ERK activation and pain behavior. FEBS Lett 580: pp. 6629-6634 CrossRef
    41. Zeitz, KP, Guy, N, Malmberg, AB, Dirajlal, S, Martin, WJ, Sun, L, Bonhaus, DW, Stucky, CL, Julius, D, Basbaum, AI (2002) The 5-HT3 subtype of serotonin receptor contributes to nociceptive processing via a novel subset of myelinated and unmyelinated nociceptors. J Neurosci 22: pp. 1010-1019
    42. Zhang, L, Hammond, DL (2010) Cellular basis for opioid potentiation in the rostral ventromedial medulla of rats with persistent inflammatory nociception. Pain 149: pp. 107-116 CrossRef
    43. Kuner, R (2010) Central mechanisms of pathological pain. Nat Med 16: pp. 1258-1266 CrossRef
    44. Chaplan, SR, Bach, FW, Pogrel, JW, Chung, JM, Yaksh, TL (1994) Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53: pp. 55-63 CrossRef
    45. Cai, YQ, Chen, SR, Pan, HL (2013) Upregulation of nuclear factor of activated T-cells by nerve injury contributes to development of neuropathic pain. J Pharmacol Exp Ther 345: pp. 161-168 CrossRef
    46. Hargreaves, K, Dubner, R, Brown, F, Flores, C, Joris, J (1988) A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 32: pp. 77-88 CrossRef
  • 刊物主题:Pain Medicine; Molecular Medicine;
  • 出版者:BioMed Central
  • ISSN:1744-8069
文摘
Background The rostral ventromedial medulla (RVM) is a key brainstem structure that conveys powerful descending influence of the central pain-modulating system on spinal pain transmission and processing. Serotonergic (5-HT) neurons are a major component in the heterogeneous populations of RVM neurons and in the descending pathways from RVM. However, the descending influence of RVM 5-HT neurons on pain behaviors remains unclear. Results In this study using optogenetic stimulation in tryptophan hydroxylase 2 (TPH2)- Channelrhodopsin 2 (ChR2) transgenic mice, we determined the behavioral effects of selective activation of RVM 5-HT neurons on mechanical and thermal pain behaviors in vivo. We found that ChR2-EYFP-positive neurons strongly co-localized with TPH2-positive (5-HT) neurons in RVM. Optogenetic stimulation significantly increased c-fos expression in 5-HT cells in the RVM of TPH2-ChR2 mice, but not in wild type mice. Behaviorally, the optogenetic stimulation decreased both mechanical and thermal pain threshold in an intensity-dependent manner, with repeated stimulation producing sensitized pain behavior for up to two weeks. Conclusions These results suggest that selective activation of RVM 5-HT neurons exerts a predominant effect of pain facilitation under control conditions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700