Beneficial effects of combined ursodeoxycholic acid and angiotensin-II type 1 receptor blocker on hepatic fibrogenesis in a rat model of nonalcoholic steatohepatitis
详细信息    查看全文
  • 作者:Tadashi Namisaki ; Ryuichi Noguchi ; Kei Moriya…
  • 关键词:Nonalcoholic steatohepatitis ; Hepatic fibrogenesis ; UDCA ; ARB
  • 刊名:Journal of Gastroenterology
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:51
  • 期:2
  • 页码:162-172
  • 全文大小:1,247 KB
  • 参考文献:1.Lindor KD, Kowdley KV, Heathcote EJ, et al. Ursodeoxycholic acid for treatment of nonalcoholic steatohepatitis: results of a randomized trial. Hepatology. 2004;39:770–8.CrossRef PubMed
    2.Dufour JF, Oneta CM, Gonvers JJ, et al. Randomized placebo-controlled trial of ursodeoxycholic acid with vitamin E in nonalcoholic steatohepatitis. Clin Gastroenterol Hepatol. 2006;4:1537–43.CrossRef PubMed
    3.Leuschner UF, Lindenthal B, Herrmann G, et al. High-dose ursodeoxycholic acid therapy for nonalcoholic steatohepatitis: a double-blind, randomized, placebo-controlled trial. Hepatology. 2010;52:472–9.CrossRef PubMed
    4.Ratziu V, de Ledinghen V, Oberti F, et al. A randomized controlled trial of high-dose ursodeoxycholic acid for nonalcoholic steatohepatitis. J Hepatol. 2011;54:1011–9.CrossRef PubMed
    5.Douhara A, Moriya K, Yoshiji H, et al. Reduction of endotoxin attenuates liver fibrosis through suppression of hepatic stellate cell activation and remission of intestinal permeability in a rat non-alcoholic steatohepatitis model. Mol Med Rep. 2015;11:1693–700.PubMedCentral PubMed
    6.Machado MV, Cortez-Pinto H. Gut microbiota and nonalcoholic fatty liver disease. Ann Hepatol. 2012;11:440–9.PubMed
    7.Bertok L. Effect of bile acids on endotoxin in vitro and in vivo (physico-chemical defense). Bile deficiency and endotoxin translocation. Ann N Y Acad Sci. 1998;851:408–10.CrossRef PubMed
    8.Yoshiji H, Yoshii J, Ikenaka Y, et al. Inhibition of renin-angiotensin system attenuates liver enzyme-altered preneoplastic lesions and fibrosis development in rats. J Hepatol. 2002;37:22–30.CrossRef PubMed
    9.Yoshiji H, Kuriyama S, Noguchi R, et al. Angiotensin-I converting enzyme inhibitors as potential anti-angiogenic agents for cancer therapy. Curr Cancer Drug Targets. 2004;4:555–67.CrossRef PubMed
    10.Yoshiji H, Kuriyama S, Fukui H. Angiotensin-I-converting enzyme inhibitors may be an alternative anti-angiogenic strategy in the treatment of liver fibrosis and hepatocellular carcinoma. Possible role of vascular endothelial growth factor. Tumour Biol. 2002;23:348–56.CrossRef PubMed
    11.Yoshiji H, Kuriyama S, Yoshii J, et al. Angiotensin-II type 1 receptor interaction is a major regulator for liver fibrosis development in rats. Hepatology. 2001;34:745–50.CrossRef PubMed
    12.Yoshiji H, Noguchi R, Ikenaka Y, et al. Losartan, an angiotensin-II type 1 receptor blocker, attenuates the liver fibrosis development of non-alcoholic steatohepatitis in the rat. BMC Res Notes. 2009;2:70.PubMedCentral CrossRef PubMed
    13.Yoshiji H, Noguchi R, Ikenaka Y, et al. Cocktail therapy with a combination of interferon, ribavirin and angiotensin-II type 1 receptor blocker attenuates murine liver fibrosis development. Int J Mol Med. 2011;28:81–8.PubMed
    14.Shirai Y, Yoshiji H, Noguchi R, et al. Cross talk between Toll-like receptor-4 signaling and angiotensin-II in liver fibrosis development in the rat model of non-alcoholic steatohepatitis. J Gastroenterol Hepatol. 2013;28:723–30.CrossRef PubMed
    15.Ishizaki K, Iwaki T, Kinoshita S, et al. Ursodeoxycholic acid protects concanavalin A-induced mouse liver injury through inhibition of intrahepatic tumor necrosis factor-alpha and macrophage inflammatory protein-2 production. Eur J Pharmacol. 2008;578:57–64.CrossRef PubMed
    16.Setchell KD, Rodrigues CM, Clerici C, et al. Bile acid concentrations in human and rat liver tissue and in hepatocyte nuclei. Gastroenterology. 1997;112:226–35.CrossRef PubMed
    17.Michel MC, Foster C, Brunner HR, et al. A systematic comparison of the properties of clinically used angiotensin II type 1 receptor antagonists. Pharmacol Rev. 2013;65:809–48.CrossRef PubMed
    18.Remuzzi A, Perico N, Amuchastegui CS, et al. Short- and long-term effect of angiotensin II receptor blockade in rats with experimental diabetes. J Am Soc Nephrol. 1993;4:40–9.PubMed
    19.Noguchi R, Yoshiji H, Ikenaka Y, et al. Dual blockade of angiotensin-II and aldosterone suppresses the progression of a non-diabetic rat model of steatohepatitis. Hepatol Res. 2013;43:765–74.CrossRef PubMed
    20.Kleiner DE, Brunt EM, Van Natta M, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41:1313–21.CrossRef PubMed
    21.Aihara Y, Yoshiji H, Noguchi R, et al. Direct renin inhibitor, aliskiren, attenuates the progression of non-alcoholic steatohepatitis in the rat model. Hepatol Res. 2013;43:1241–50.CrossRef PubMed
    22.Seki E, De Minicis S, Osterreicher CH, et al. TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat Med. 2007;13:1324–32.CrossRef PubMed
    23.Ulluwishewa D, Anderson RC, McNabb WC, et al. Regulation of tight junction permeability by intestinal bacteria and dietary components. J Nutr. 2011;141:769–76.CrossRef PubMed
    24.Trauner M, Graziadei IW. Review article: mechanisms of action and therapeutic applications of ursodeoxycholic acid in chronic liver diseases. Aliment Pharmacol Ther. 1999;13:979–96.CrossRef PubMed
    25.Buko VU, Kuzmitskaya-Nikolaeva IA, Naruta EE, et al. Ursodeoxycholic acid dose-dependently improves liver injury in rats fed a methionine- and choline-deficient diet. Hepatol Res. 2011;41:647–59.CrossRef PubMed
    26.Bjornsson E. The clinical aspects of non-alcoholic fatty liver disease. Minerva Gastroenterol Dietol. 2008;54:7–18.PubMed
    27.Buko VU, Lukivskaya OY, Zavodnik LV, et al. Antioxidative effect of ursodeoxycholic acid in the liver of rats with oxidative stress caused by gamma-irradiation. Ukr Biokhim Zh. 2002;74:88–92.
    28.Li X, Wang C, Nie J, et al. Toll-like receptor 4 increases intestinal permeability through up-regulation of membrane PKC activity in alcoholic steatohepatitis. Alcohol. 2013;47:459–65.CrossRef PubMed
    29.Guo S, Al-Sadi R, Said HM, et al. Lipopolysaccharide causes an increase in intestinal tight junction permeability in vitro and in vivo by inducing enterocyte membrane expression and localization of TLR-4 and CD14. Am J Pathol. 2013;182:375–87.PubMedCentral CrossRef PubMed
    30.Bruewer M, Luegering A, Kucharzik T, et al. Proinflammatory cytokines disrupt epithelial barrier function by apoptosis-independent mechanisms. J Immunol. 2003;171:6164–72.CrossRef PubMed
    31.Schwarzenberg SJ, Bundy M. Ursodeoxycholic acid modifies gut-derived endotoxemia in neonatal rats. Pediatr Res. 1994;35:214–7.CrossRef PubMed
    32.Sombetzki M, Fuchs CD, Fickert P, et al. 24-nor-ursodeoxycholic acid ameliorates inflammatory response and liver fibrosis in a murine model of hepatic schistosomiasis. J Hepatol. 2015;62:871–8.PubMedCentral CrossRef PubMed
    33.Friedman SL. Mechanisms of hepatic fibrogenesis. Gastroenterology. 2008;134:1655–69.PubMedCentral CrossRef PubMed
    34.Liang TJ, Yuan JH, Tan YR, et al. Effect of ursodeoxycholic acid on TGF beta1/Smad signaling pathway in rat hepatic stellate cells. Chin Med J (Engl). 2009;122:1209–13.PubMed
    35.Roth S, Michel K, Gressner AM. (Latent) transforming growth factor beta in liver parenchymal cells, its injury-dependent release, and paracrine effects on rat hepatic stellate cells. Hepatology. 1998;27:1003–12.CrossRef PubMed
    36.Armendariz-Borunda J, Seyer JM, Kang AH, et al. Regulation of TGF beta gene expression in rat liver intoxicated with carbon tetrachloride. FASEB J. 1990;4:215–21.PubMed
  • 作者单位:Tadashi Namisaki (1)
    Ryuichi Noguchi (1)
    Kei Moriya (1)
    Mitsuteru Kitade (1)
    Yosuke Aihara (1)
    Akitoshi Douhara (1)
    Norihisa Nishimura (1)
    Kosuke Takeda (1)
    Yasushi Okura (1)
    Hideto Kawaratani (1)
    Hiroaki Takaya (1)
    Kenichiro Seki (1)
    Hitoshi Yoshiji (1)

    1. Third Department of Internal Medicine, Nara Medical University, Shijo-cho 840, Kashihara, Nara, 634-8522, Japan
  • 刊物类别:Medicine
  • 刊物主题:Medicine & Public Health
    Gastroenterology
    Oncology
    Surgical Oncology
    Hepatology
    Internal Medicine
    Colorectal Surgery
  • 出版者:Springer Japan
  • ISSN:1435-5922
文摘
Background and Aims Ursodeoxycholic acid (UDCA) is considered to be effective in the treatment of nonalcoholic steatohepatitis (NASH), particularly in combination with other pharmacological agents. UDCA reportedly counteracts the effects of endotoxemia. Previously, we demonstrated attenuated hepatic fibrogenesis and suppression of activated hepatic stellate cells (Ac-HSC) with an angiotensin-II (AT-II) type 1 receptor blocker (ARB). Here we evaluated the simultaneous effect of both agents on hepatic fibrogenesis in a rat model of NASH.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700