Phase diagrams, thermodynamic properties and sound velocities derived from a multiple Einstein method using vibrational densities of states: an application to MgO–SiO2
详细信息    查看全文
文摘
In a previous paper, we showed a technique that simplifies Kieffer’s lattice vibrational method by representing the vibrational density of states with multiple Einstein frequencies. Here, we show that this technique can be applied to construct a thermodynamic database that accurately represents thermodynamic properties and phase diagrams for substances in the system MgO–SiO2. We extended our technique to derive shear moduli of the relevant phases in this system in pressure–temperature space. For the construction of the database, we used recently measured calorimetric and volumetric data. We show that incorporating vibrational densities of states predicted from ab initio methods into our models enables discrimination between different experimental data sets for heat capacity. We show a general technique to optimize the number of Einstein frequencies in the VDoS, such that thermodynamic properties are affected insignificantly. This technique allows constructing clones of databases from which we demonstrate that the VDoS has a significant effect on heat capacity and entropy, and an insignificant effect on volume properties.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700