Ultracompact Slow Surface Plasmon Polaritons Superlattice with Broad Bandwidth and Super-High Normalized Delay-Bandwidth Product
详细信息    查看全文
  • 作者:Weihua Lin ; Xiaosong Liu ; Zhiwen Kang ; Qian Wang ; Anhua Dong
  • 关键词:Surface plasmon polaritons ; Slow light ; Optical superlattice ; Metal gap waveguide
  • 刊名:Plasmonics
  • 出版年:2014
  • 出版时间:October 2014
  • 年:2014
  • 卷:9
  • 期:5
  • 页码:1001-1005
  • 全文大小:454 KB
  • 参考文献:1. Liu C, Dutton Z, Behroozi C, Hau L (2001) Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409:490-93 CrossRef
    2. Khurgin J (2005) Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis. J Opt Soc Am B 22:1062-074 CrossRef
    3. Xia F, Sekaric L, Vlasov Y (2007) Ultracompact optical buffers on a silicon chip. Nat Photonics 1:65-1 CrossRef
    4. Hill M, Dorren H, Vries T, Leijtens X, Bensten J, Smalbrugge B, Oei Y, Binsma H, Khoe G, Smit M (2004) A fast low-power optical memory based on coupled micro-ring lasers. Nature 432:206-09 CrossRef
    5. Hau L, Harris S, Dutton Z, Behroozi C (1999) Light speed reduction to 17 meters per second in an ultracold atomic gas. Nature 397:594-98 CrossRef
    6. Turukhin A, Sudarshanam V, Shahriar M, Musser J, Ham B, Hemmer P (2002) Observation of ultraslow and stored light pulses in a solid. Phys Rev Lett 88:023602 CrossRef
    7. Bigelow M, Lepeshkin N, Boyd R (2003) Superluminal and slow light propagation in a room-temperature solid. Science 301:200-02 CrossRef
    8. Schneider T (2008) Time delay limits of stimulated-Brillouin-scattering-based slow light systems. Opt Lett 33:1398-400 CrossRef
    9. Okawachi Y, Foster M, Sharping J, Gaeta A, Xu Q, Lipson M (2006) All-optical slow-light on a photonic chip. Opt Express 14:2317-322 CrossRef
    10. Baba T (2008) Slow light in photonic crystals. Nat Photonics 2:465-73 CrossRef
    11. Ye Y, Ding J, Jeong D, Khoo I, Zhang Q (2004) Finite-size effect on one-dimensional coupled-resonator optical waveguides. Phys Rev E 69:056604 CrossRef
    12. Ghulinyan M, Galli M, Toninelli C, Bertolotti J, Gottardo S, Marabelli F, Wiersma D, Pavesi L, Andreani L (2006) Wide-band transmission of nondistorted slow waves in one-dimensional optical superlattices. Appl Phys Lett 88:241103 CrossRef
    13. Poon J, Zhu L, Derose G, Yariv A (2006) Transmission and group delay of microring coupled-resonator optical waveguides. Opt Lett 31:456-58 CrossRef
    14. Xu Q, Dong P, Lipson M (2007) Breaking the delay–bandwidth limit in a photonic structure. Nat Phys 3:406-10 CrossRef
    15. Barnes W, Dereux A, Ebbesen T (2003) Surface plasmon subwavelength optics. Nature 424:824-30 CrossRef
    16. Ozbay E (2006) Plasmonics: merging photonics and electronicsat nanoscale dimensions. Science 311:189-93 CrossRef
    17. Bozhevolnyi S, Volkov V, Devaux E, Laluet J, Ebbesen T (2006) Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440:508-11 CrossRef
    18. Sandtke M, Kuipers L (2007) Slow guided surface plasmons at telecom frequencies. Nat Photonics 1:573-76 CrossRef
    19. Gan Q, Fu Z, Ding Y, Bartoli F (2008) Ultrawide-bandwidth slow-light system based on THz plasmonic graded metallic grating structures. Phys Rev Lett 100:256803 CrossRef
    20. Gan Q, Ding Y, Bartoli F (2009) “Rainbow-trapping and releasing at telecommunication wavelengths. Phys Rev Lett 102:056801 CrossRef
    21. Chen L, Wang GP, Gan Q, Bartoli F (2009) Trapping of surface-plasmon polaritons in a graded Bragg structure: Frequency-dependent spatially separated localization of the visible spectrum modes. Phys Rev B 80:161106 CrossRef
    22. Chen L, Wang GP, Gan Q, Bartoli F (2010) Rainbow trapping and releasing by chirped plasmonic waveguides at visible frequencies. Appl Phys Lett 97:153115 CrossRef
    23. Kang Z, Lin W, Wang GP (2009) Dual-channel broadband slow surface plasmon polaritons in metal gap waveguide superlattices. J Opt Soc Am B 26:1944-948 CrossRef
    24. Zhang J, Cai L, Bai W, Xu Y, Song G (2009) Slow light at terahertz frequencies in surface plasmon polariton assisted grating waveguide. J Appl Phys 106:103715 CrossRef
    25. Yang L, Min C, Veronis G (2010) Guide subwavelength slow-light mode supported by a plasmonic waveguide system. Opt Lett 35:4184-186 CrossRef
    26. Huang Y, Min C, Veronis G (2011) Subwavelength slow-light waveguides base on a plasmonic analogue of electromagnetically induced transparency. Appl Phys Lett 99:143117 CrossRef
    27. Xu Y, Miroshnichenko A, Lan S, Guo Q, Wu L (2011) Impedance match induce high transmission and flat response band-pass plasmonic waveguides. Plasmonics 6:337-43 CrossRef
    28. Li C, Zhang X, Wang Y, Song Y, Kong D, Wang Y (2012) Slow surface plasmon polaritons with a large normalized delay bandwidth product in an ultracompact metal gap superlattice. Opt Commun 285:1993-996 CrossRef
    29. Vlasov Y, O’Boyle M, Hamann H, McNab S (2005) Active control of slow light on a chip with photonic crystal waveguides. Nature 438:65-9 CrossRef
    30. Yeh P, Yariv A, Hong C (1977) Electromagnetic propagation in periodic stratified media. I. General theory. J Opt Soc Am 67:423-37 CrossRef
    31. Lin W, Gu Y, Wang GP (2008) Zener tunneling in plasmonic metal gap waveguide superlattices. Appl Phys Lett 93:133118 CrossRef
    32. Kaminow I, Mammel W, Weber H (1974) Metal-clad optical waveguides: analytical and experimental study. Appl Opt 13:396-05 CrossRef
    33. Johnson P, Christy R (1972) Optical constants of the noble metals. Phys Rev B 6:4370-379 CrossRef
    34. Wang X, Kempa K (2005) Negative refraction and subwavelength lensing in a polaritonic crystal. Phys Rev B 71:233101 CrossRef
    35. Brillouin L (1960) Wave propagation and group velocity. Academic
    36. Boyd R, Gauthier D (2002) in Progress in Optics, E. Wolf, ed. Elsevier, Vol. 43, pp. 497-30
  • 作者单位:Weihua Lin (1)
    Xiaosong Liu (1)
    Zhiwen Kang (2)
    Qian Wang (1)
    Anhua Dong (1)

    1. Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan, 430072, China
    2. Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
  • ISSN:1557-1963
文摘
In this paper, we propose an ultracompact low-loss plasmonic superlattice for slow surface plasmon polaritons. The superlattice consists of a two-dimensional metal gap waveguide (Ag-SiO2-Ag) inserted with thin metal films working as coupled reflectors. Theoretical calculations indicate that the device is working on a broad bandwidth of 37?THz including the two telecom wavelengths of 1,310 and 1,550?nm and with mean group refractive index of 3.5 and mean transmission of 60?%. As the total geometric thickness is only 1.6?μm, the normalized delay-bandwidth product of the superlattice is as high as 0.44. All the theoretical prediction based upon the transfer matrix method is validated by the finite-difference time-domain numerical simulation on surface plasmon polaritons propagating in the superlattice.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700