Comparative analysis of plasma metabolomics response to metabolic challenge tests in healthy subjects and influence of the FTO obesity risk allele
详细信息    查看全文
  • 作者:Simone Wahl (1) (2)
    Susanne Krug (2) (3) (4) (5)
    Cornelia Then (6) (7)
    Anna Kirchhofer (6) (7)
    Gabi Kastenmüller (8)
    Tina Brand (4) (5) (9)
    Thomas Skurk (3) (4) (9)
    Melina Claussnitzer (3)
    Cornelia Huth (10) (2)
    Margit Heier (10)
    Christa Meisinger (10) (2)
    Annette Peters (10) (2)
    Barbara Thorand (10) (2)
    Christian Gieger (11)
    Cornelia Prehn (12)
    Werner R?misch-Margl (8)
    Jerzy Adamski (12) (13) (2)
    Karsten Suhre (14) (8)
    Thomas Illig (1) (15)
    Harald Grallert (1) (2) (5)
    Helmut Laumen (12) (2) (3) (4) (5)
    Jochen Seissler (6) (7)
    Hans Hauner (2) (3) (4) (5) (9)
  • 关键词:Metabolomics ; Metabolite profile ; Nutritional challenge ; Metabolic challenge ; Oral glucose tolerance test ; Oral lipid tolerance test ; Intravenous glucose tolerance test ; Clamp ; Obesity ; FTO ; Gene ; environment interaction
  • 刊名:Metabolomics
  • 出版年:2014
  • 出版时间:June 2014
  • 年:2014
  • 卷:10
  • 期:3
  • 页码:386-401
  • 全文大小:1,037 KB
  • 参考文献:1. Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. / Journal of the Royal Statistical Society, / 57, 289-00.
    2. Berulava, T., & Horsthemke, B. (2010). The obesity-associated SNPs in intron 1 of the FTO gene affect primary transcript levels. / European Journal of Human Genetics, / 18, 1054-056. CrossRef
    3. Bouchard, C. (2008). Gene-environment interactions in the etiology of obesity: Defining the fundamentals. / Obesity, / 16(Suppl 3), S5–S10. CrossRef
    4. D’Orazio, P., Burnett, R. W., Fogh-Andersen, N., et al. (2005). Approved IFCC recommendation on reporting results for blood glucose (abbreviated). / Clinical Chemistry, / 51, 1573-576. CrossRef
    5. Deo, R. C., Hunter, L., Lewis, G. D., et al. (2010). Interpreting metabolomic profiles using unbiased pathway models. / PLoS Computational Biology, / 6, e1000692. CrossRef
    6. Donchenko, V., Zannetti, A., & Baldini, P. M. (1994). Insulin-stimulated hydrolysis of phosphatidylcholine by phospholipase C and phospholipase D in cultured rat hepatocytes. / Biochimica et Biophysica Acta, / 1222, 492-00. CrossRef
    7. Duvillard, L., Florentin, E., Lizard, G., et al. (2003). Cell surface expression of LDL receptor is decreased in type 2 diabetic patients and is normalized by insulin therapy. / Diabetes Care, / 26(5), 1540-544. CrossRef
    8. Efron, B., & Tibshirani, R. J. (1994). / An introduction to the bootstrap (1st ed.). Boca Raton: Chapman and Hall/CRC.
    9. Fall, T., H?gg, S., M?gi, R., et al. (2013). The role of adiposity in cardiometabolic traits: a mendelian randomization analysis. / PLoS Med, / 10, e1001474. CrossRef
    10. Fontaine-Bisson, B., Wolever, T. M. S., Chiasson, J.-L., et al. (2007). Tumor necrosis factor alpha-238G > A genotype alters postprandial plasma levels of free fatty acids in obese individuals with type 2 diabetes mellitus. / Metabolism, / 56, 649-55. CrossRef
    11. Franks, P. W., Ekelund, U., Brage, S., et al. (2007). PPARGC1A coding variation may initiate impaired NEFA clearance during glucose challenge. / Diabetologia, / 50, 569-73. CrossRef
    12. Frayling, T. M., Timpson, N. J., Weedon, M. N., et al. (2007). A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. / Science, / 316, 889-94. CrossRef
    13. Freathy, R. M., Timpson, N. J., Lawlor, D. A., et al. (2008). Common variation in the FTO gene alters diabetes-related metabolic traits to the extent expected given its effect on BMI. / Diabetes, / 57, 1419-426. CrossRef
    14. Genolini, Christophe, & Falissard, B. (2010). KmL: k-means for longitudinal data. / Computational Statistics, / 25(2), 317-28. CrossRef
    15. Genolini, C., Pingault, J. B., Driss, T., et al. (2013). KmL3D: a non-parametric algorithm for clustering joint trajectories. / Computer Methods and Programs in Biomedicine, / 109, 104-11. CrossRef
    16. Gerken, T., Girard, C. A., Tung, Y.-C. L., et al. (2007). The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. / Science, / 318, 1469-472. CrossRef
    17. Getty-Kaushik, L., Song, D. H., Boylan, M. O., Corkey, B. E., & Wolfe, M. M. (2006). Glucose-dependent insulinotropic polypeptide modulates adipocyte lipolysis and reesterification. / Obesity, / 14, 1124-131. CrossRef
    18. Gieger, C., Geistlinger, L., Altmaier, E., et al. (2008). Genetics meets metabolomics: A genome-wide association study of metabolite profiles in human serum. / PLoS Genetics, / 4, e1000282. CrossRef
    19. Hamel, F. G., Bennett, R. G., Upward, J. L., & Duckworth, W. C. (2001). Insulin inhibits peroxisomal fatty acid oxidation in isolated rat hepatocytes. / Endocrinology, / 142, 2702-706.
    20. He, M., Su, H., Gao, W., et al. (2010). Reversal of obesity and insulin resistance by a non-peptidic glucagon-like peptide-1 receptor agonist in diet-induced obese mice. / PLoS One, / 5, e14205. CrossRef
    21. Ho, J. E., Larson, M. G., Vasan, R. S., et al. (2013). Metabolite profiles during oral glucose challenge. / Diabetes, / 62, 2689-698. CrossRef
    22. Holzapfel, C., Grallert, H., Huth, C., et al. (2010). Genes and lifestyle factors in obesity: results from 12,462 subjects from MONICA/KORA. / International Journal of Obesity, / 34, 1538-545. CrossRef
    23. Illig, T., Gieger, C., Zhai, G., et al. (2010). A genome-wide perspective of genetic variation in human metabolism. / Nature Genetics, / 42, 137-41. CrossRef
    24. Kolz, M., Johnson, T., Sanna, S., et al. (2009). Meta-analysis of 28,141 individuals identifies common variants within Five new loci that influence uric acid concentrations. / PLoS Genetics, / 5, e1000504. CrossRef
    25. Krug, S., Kastenmüller, G., Stückler, F., et al. (2012). The dynamic range of the human metabolome revealed by challenges. / FASEB Journal, / 26, 2607-619. CrossRef
    26. Krumsiek, J., Suhre, K., Illig, T., Adamski, J., & Theis, F. J. (2011). Gaussian graphical modeling reconstructs pathway reactions from high-throughput metabolomics data. / BMC Systems Biology, / 5, 21. CrossRef
    27. Krumsiek, J., Suhre, K., Illig, T., Adamski, J., & Theis, F. J. (2012). Bayesian independent component analysis recovers pathway signatures from blood metabolomics data. / Journal of Proteome Research, / 11, 4120-131. CrossRef
    28. Kryszczuk, K., & Hurley, P. (2010). Estimation of the number of clusters using multiple clustering validity indices. In N. Gayar, J. Kittler, & F. Roli (Eds.), / Multiple classifier systems. Berlin: Springer.
    29. Laird, N. M., & Ware, J. H. (1982). Random-effects models for longitudinal data. / Biometrics, / 38, 963-74. CrossRef
    30. Lee, J., Hong, S.-W., Rhee, E.-J., & Lee, W.-Y. (2012). GLP-1 receptor agonist and non-alcoholic fatty liver disease. / Diabetes & Metabolism, / 36, 262-67. CrossRef
    31. Lopez-Miranda, J., Williams, C., & Lairon, D. (2007). Dietary, physiological, genetic and pathological influences on postprandial lipid metabolism. / The British Journal of Nutrition, / 98, 458-73. CrossRef
    32. Luís, P. B. M., Ruiter, J. P. N., Ijlst, L., et al. (2011). Role of isovaleryl-CoA dehydrogenase and short branched-chain acyl-CoA dehydrogenase in the metabolism of valproic acid: implications for the branched-chain amino acid oxidation pathway. / Drug Metabolism and Disposition, / 39, 1155-160. CrossRef
    33. McTernan, P. G., Harte, A. L., Anderson, L. A., et al. (2002). Insulin and rosiglitazone regulation of lipolysis and lipogenesis in human adipose tissue in vitro. / Diabetes, / 51, 1493-498. CrossRef
    34. N?gele, H., Gebhardt, A., Niendorf, A., Kroschinski, J., & Zeller, W. (1997). LDL receptor activity in human leukocyte subtypes: regulation by insulin. / Clinical Biochemistry, / 30, 531-38. CrossRef
    35. Newgard, C. B., An, J., Bain, J. R., et al. (2009). A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. / Cell Metabolism, / 9, 311-26. CrossRef
    36. Novotná, R., De Vito, P., Currado, L., Luly, P., & Baldini, P. M. (2003). Involvement of phospholipids in the mechanism of insulin action in HEPG2 cells. / Physiological Research, / 52, 447-54.
    37. Ogita, K., Ai, M., Tanaka, A., Ito, Y., Hirano, T., Yoshino, G., et al. (2008). Serum concentration of small dense low-density lipoprotein-cholesterol during oral glucose tolerance test and oral fat tolerance test. / Clinica Chimica Acta, / 387, 36-1. CrossRef
    38. Ordovas, J. M., & Shen, J. (2008). Gene-environment interactions and susceptibility to metabolic syndrome and other chronic diseases. / Journal of Periodontology, / 79, 1508-513. CrossRef
    39. Pannacciulli, N., Bunt, J. C., Koska, J., Bogardus, C., & Krakoff, J. (2006). Higher fasting plasma concentrations of glucagon-like peptide 1 are associated with higher resting energy expenditure and fat oxidation rates in humans. / The American Journal of Clinical Nutrition, / 84, 556-60.
    40. Pellis, L., van Erk, M. J., van Ommen, B., et al. (2012). Plasma metabolomics and proteomics profiling after a postprandial challenge reveal subtle diet effects on human metabolic status. / Metabolomics, / 8, 347-59. CrossRef
    41. R Development Core Team. (2012). / R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org.
    42. Ramos-Roman, M. A., Sweetman, L., Valdez, M. J., & Parks, E. J. (2012). Postprandial changes in plasma acylcarnitine concentrations as markers of fatty acid flux in overweight and obesity. / Metabolism, / 61, 202-12. CrossRef
    43. Ranganath, L. R. (2008). The entero-insular axis: implications for human metabolism. / Clinical Chemistry and Laboratory Medicine, / 46, 43-6. CrossRef
    44. Rathmann, W., Strassburger, K., Heier, M., Holle, R., Thorand, B., Giani, G., et al. (2009). Incidence of Type 2 diabetes in the elderly German population and the effect of clinical and lifestyle risk factors: KORA S4/F4 cohort study. / Diabetic Medicine, / 26, 1212-219. CrossRef
    45. R?misch-Margl, W., Prehn, C., Bogumil, R., R?hring, C., Suhre, K., & Adamski, J. (2011). Procedure for tissue sample preparation and metabolite extraction for high-throughput targeted metabolomics. / Metabolomics, / 8, 133-42. CrossRef
    46. Ruiz-Grande, C., Alarcón, C., Mérida, E., & Valverde, I. (1992). Lipolytic action of glucagon-like peptides in isolated rat adipocytes. / Peptides, / 13, 13-6. CrossRef
    47. Sancho, V., Trigo, M. V., González, N., Valverde, I., Malaisse, W. J., & Villanueva-Pe?acarrillo, M. L. (2005). Effects of glucagon-like peptide-1 and exendins on kinase activity, glucose transport and lipid metabolism in adipocytes from normal and type-2 diabetic rats. / Journal of Molecular Endocrinology, / 35(1), 27-8. CrossRef
    48. Seghieri, M., Rebelos, E., Gastaldelli, A., et al. (2013). Direct effect of GLP-1 infusion on endogenous glucose production in humans. / Diabetologia, / 56, 156-61. CrossRef
    49. Shaham, O., Wei, R., Wang, T. J., et al. (2008). Metabolic profiling of the human response to a glucose challenge reveals distinct axes of insulin sensitivity. / Molecular Systems Biology, / 4, 214. CrossRef
    50. Skurk, T., Rubio-Aliaga, I., Stamfort, A., Hauner, H., & Daniel, H. (2011). New metabolic interdependencies revealed by plasma metabolite profiling after two dietary challenges. / Metabolomics, / 7, 388-99. CrossRef
    51. Standaert, M. L., Avignon, A., Yamada, K., Bandyopadhyay, G., & Farese, R. V. (1996a). The phosphatidylinositol 3-kinase inhibitor, wortmannin, inhibits insulin-induced activation of phosphatidylcholine hydrolysis and associated protein kinase C translocation in rat adipocytes. / The Biochemical Journal, / 313, 1039-046.
    52. Standaert, M. L., Bandyopadhyay, G., Zhou, X., Galloway, L., & Farese, R. V. (1996b). Insulin stimulates phospholipase D-dependent phosphatidylcholine hydrolysis, Rho translocation, de novo phospholipid synthesis, and diacylglycerol/protein kinase C signaling in L6 myotubes. / Endocrinology, / 137, 3014-020.
    53. Suhre, K., Shin, S.-Y., Petersen, A.-K., et al. (2011). Human metabolic individuality in biomedical and pharmaceutical research. / Nature, / 477, 54-0. CrossRef
    54. Svegliati-Baroni, G., Saccomanno, S., Rychlicki, C., et al. (2011). Glucagon-like peptide-1 receptor activation stimulates hepatic lipid oxidation and restores hepatic signalling alteration induced by a high-fat diet in nonalcoholic steatohepatitis. / Liver International, / 31, 1285-297. CrossRef
    55. Tan, G. D., Neville, M. J., Liverani, E., et al. (2006). The in vivo effects of the Pro12Ala PPARgamma2 polymorphism on adipose tissue NEFA metabolism: the first use of the Oxford Biobank. / Diabetologia, / 49, 158-68. CrossRef
    56. Thorleifsson, G., Walters, G. B., Gudbjartsson, D. F., et al. (2009). Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. / Nature Genetics, / 41, 18-4. CrossRef
    57. Timper, K., Grisouard, J., Sauter, N. S., et al. (2013). Glucose-dependent insulinotropic polypeptide induces cytokine expression, lipolysis, and insulin resistance in human adipocytes. / American Journal of Physiology, Endocrinology and Metabolism, / 304, E1–E13. CrossRef
    58. Van Ommen, B., Keijer, J., Heil, S. G., & Kaput, J. (2009). Challenging homeostasis to define biomarkers for nutrition related health. / Molecular Nutrition & Food Research, / 53, 795-04. CrossRef
    59. Vendrell, J., El Bekay, R., Peral, B., et al. (2011). Study of the potential association of adipose tissue GLP-1 receptor with obesity and insulin resistance. / Endocrinology, / 152, 4072-079. CrossRef
    60. Villanueva-Pe?acarrillo, M. L., Márquez, L., González, N., Díaz-Miguel, M., & Valverde, I. (2001). Effect of GLP-1 on lipid metabolism in human adipocytes. / Hormone and Metabolic Research, / 33, 73-7. CrossRef
    61. Walsh, M. C., Brennan, L., Malthouse, J. P. G., Roche, H. M., & Gibney, M. J. (2006). Effect of acute dietary standardization on the urinary, plasma, and salivary metabolomic profiles of healthy humans. / The American Journal of Clinical Nutrition, / 84, 531-39.
    62. Walters, S. J. (2004). Sample size and power estimation for studies with health related quality of life outcomes: A comparison of four methods using the SF-36. / Health and Quality of Life Outcomes, / 2, 26. CrossRef
    63. Wang, C., Feng, R., Sun, D., Li, Y., Bi, X., & Sun, C. (2011). Metabolic profiling of urine in young obese men using ultra performance liquid chromatography and Q-TOF mass spectrometry (UPLC/Q-TOF MS). / Journal of Chromatography, / 879, 2871-876. CrossRef
    64. Wareham, N. J., Young, E. H., & Loos, R. J. F. (2008). Epidemiological study designs to investigate gene-behavior interactions in the context of human obesity. / Obesity, / 16(Suppl 3), S66–S71. CrossRef
    65. Weickert, M. O., Loeffelholz, C., Roden, V. M., et al. (2007). A Thr94Ala mutation in human liver fatty acid-binding protein contributes to reduced hepatic glycogenolysis and blunted elevation of plasma glucose levels in lipid-exposed subjects. / American Journal of Physiology, Endocrinology and Metabolism, / 293, E1078–E1084. CrossRef
    66. Westphal, S., Orth, M., Ambrosch, A., Osmundsen, K., & Luley, C. (2000). Postprandial chylomicrons and VLDLs in severe hypertriacylglycerolemia are lowered more effectively than are chylomicron remnants after treatment with n-3 fatty acids. / The American Journal of Clinical Nutrition, / 71, 914-20.
    67. Willer, C. J., Speliotes, E. K., Loos, R. J., et al. (2009). Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. / Nature Genetics, / 41, 25-4. CrossRef
    68. Wu, Q., Saunders, R. A., Szkudlarek-Mikho, M., de la Serna, I., & Chin, K.-V. (2010). The obesity-associated Fto gene is a transcriptional coactivator. / Biochemical and Biophysical Research Communications, / 401, 390-95. CrossRef
    69. Würtz, P., M?kinen, V.-P., Soininen, P., et al. (2012). Metabolic signatures of insulin resistance in 7,098 young adults. / Diabetes, / 61, 1372-380. CrossRef
    70. Wybranska, I., Malczewska-Malec, M., Partyka, L., et al. (2007). Evaluation of genetic predisposition to insulin resistance by nutrient-induced insulin output ratio (NIOR). / Clinical Chemistry and Laboratory Medicine, / 45, 1124-132. CrossRef
    71. Zhao, X., Peter, A., Fritsche, J., et al. (2009). Changes of the plasma metabolome during an oral glucose tolerance test: Is there more than glucose to look at? / American journal of physiology, Endocrinology and metabolism, / 296, E384–E393. CrossRef
    72. Zivkovic, A. M., Wiest, M. M., Nguyen, U., Nording, M. L., Watkins, S. M., & German, J. B. (2009). Assessing individual metabolic responsiveness to a lipid challenge using a targeted metabolomic approach. / Metabolomics, / 5, 209-18. CrossRef
    73. Zukunft, S., Sorgenfrei, M., Prehn, C., M?ller, G., & Adamski, J. (2013). Targeted Metabolomics of Dried Blood Spot Extracts. / Chromatographia. doi:10.1007/s001090000086 .
  • 作者单位:Simone Wahl (1) (2)
    Susanne Krug (2) (3) (4) (5)
    Cornelia Then (6) (7)
    Anna Kirchhofer (6) (7)
    Gabi Kastenmüller (8)
    Tina Brand (4) (5) (9)
    Thomas Skurk (3) (4) (9)
    Melina Claussnitzer (3)
    Cornelia Huth (10) (2)
    Margit Heier (10)
    Christa Meisinger (10) (2)
    Annette Peters (10) (2)
    Barbara Thorand (10) (2)
    Christian Gieger (11)
    Cornelia Prehn (12)
    Werner R?misch-Margl (8)
    Jerzy Adamski (12) (13) (2)
    Karsten Suhre (14) (8)
    Thomas Illig (1) (15)
    Harald Grallert (1) (2) (5)
    Helmut Laumen (12) (2) (3) (4) (5)
    Jochen Seissler (6) (7)
    Hans Hauner (2) (3) (4) (5) (9)

    1. Research Unit of Molecular Epidemiology, Helmholtz Zentrum München -German Research Center for Environmental Health, Neuherberg, Germany
    2. German Center for Diabetes Research (DZD), Neuherberg, Germany
    3. Else Kr?ner-Fresenius-Center for Nutritional Medicine, Chair of Nutritional Medicine, Technische Universit?t München, Gregor-Mendel-Str. 2, 85350, Freising-Weihenstephan, Germany
    4. ZIEL, Research Center for Nutrition and Food Sciences, Technische Universit?t München, Freising-Weihenstephan, Germany
    5. Clinical Cooperation Group Nutrigenomics and Type 2, Technische Universit?t München and Helmholtz Zentrum München, Munich, Germany
    6. Medizinische Klinik and Poliklinik IV, Diabetes Zentrum -Campus Innenstadt, Klinikum der Universit?t München, Munich, Germany
    7. Clinical Cooperation Group Diabetes, Ludwig-Maximilians-Universit?t München and Helmholtz Zentrum München, Munich, Germany
    8. Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München -German Research Center for Environmental Health, Neuherberg, Germany
    9. Else Kr?ner-Fresenius-Center for Nutritional Medicine, Klinikum rechts der Isar, Technische Universit?t München, Freising-Weihenstephan, Germany
    10. Institute of Epidemiology II, Helmholtz Zentrum München -German Research Center for Environmental Health, Neuherberg, Germany
    11. Institute of Genetic Epidemiology, Helmholtz Zentrum München -German Research Center for Environmental Health, Neuherberg, Germany
    12. Institute of Experimental Genetics, Helmholtz Zentrum München -German Research Center for Environmental Health, Neuherberg, Germany
    13. Institute of Experimental Genetics, Life and Food Science Center Weihenstephan, Technische Universit?t München, Freising-Weihenstephan, Germany
    14. Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar (WCMC-Q), Doha, Qatar
    15. Medical School Hannover, Hannover Unified Biobank, Hanover, Germany
  • ISSN:1573-3890
文摘
The measurement of metabolites during intravenous or nutritional challenges may improve the identification of novel metabolic signatures which are not detectable in the fasting state. Here, we comprehensively characterized the plasma metabolomics response to five defined challenge tests and explored their use to identify interactions with the FTO rs9939609 obesity risk genotype. Fifty-six non-diabetic male participants of the KORA S4/F4 cohort, including 25 homozygous carriers of the FTO risk allele (AA genotype) and 31 carriers of the TT genotype were recruited. Challenges comprised an oral glucose tolerance test, a standardized high-fat high-carbohydrate meal and a lipid tolerance test, as well as an intravenous glucose tolerance test and a euglycemic hyperinsulinemic clamp. Blood was sampled for biochemical and metabolomics measurement before and during the challenges. Plasma samples were analyzed using a mass spectrometry-based metabolomics approach targeting 163 metabolites. Linear mixed-effects models and cluster analysis were performed. In both genotype groups, we observed significant challenge-induced changes for all major metabolite classes (amino acids, hexose, acylcarnitines, phosphatidylcholines, lysophosphatidylcholines and sphingomyelins, with corrected p-values ranging from 0.05 to 6.7E?7), which clustered in five distinct metabolic response profiles. Our data contribute to the understanding of plasma metabolomics response to diverse metabolic challenges, including previously unreported metabolite changes in response to intravenous challenges. The FTO genotype had only minor effects on the metabolite fluxes after standardized metabolic challenges.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700