A fragmented form of annexin A1 is secreted from C2C12 myotubes by electric pulse-induced contraction
详细信息    查看全文
  • 作者:Naoko Goto-Inoue ; Kotaro Tamura ; Fumika Motai…
  • 关键词:Annexin A1 ; C2C12 myotubes ; Contraction ; Secretion
  • 刊名:Molecular and Cellular Biochemistry
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:411
  • 期:1-2
  • 页码:173-180
  • 全文大小:759 KB
  • 参考文献:1.Perretti M, D’Acquisto F (2009) Annexin A1 and glucocorticoids as effectors of the resolution of inflammation. Nat Rev Immunol 9:62–70. doi:10.​1038/​nri2470 CrossRef PubMed
    2.Williams SL, Milne IR, Bagley CJ, Gamble JR, Vadas MA, Pitson SM, Khew-Goodall Y (2010) A proinflammatory role for proteolytically cleaved annexin A1 in neutrophil transendothelial migration. J Immunol 185:3057–3063. doi:10.​4049/​jimmunol.​1000119 CrossRef PubMed
    3.Sakaguchi M, Murata H, Sonegawa H, Sakaguchi Y, Futami J, Kitazoe M, Yamada H, Huh NH (2007) Truncation of annexin A1 is a regulatory lever for linking epidermal growth factor signaling with cytosolic phospholipase A2 in normal and malignant squamous epithelial cells. J Biol Chem 282:35679–35686. doi:10.​1074/​jbc.​M707538200 CrossRef PubMed
    4.Huo XF, Zhang JW (2005) Annexin1 regulates the erythroid differentiation through ERK signaling pathway. Biochem Biophys Res Commun 331:1346–1352. doi:10.​1016/​j.​bbrc.​2005.​04.​049 CrossRef PubMed
    5.Vergnolle N, Comera C, Bueno L (1995) Annexin 1 is overexpressed and specifically secreted during experimentally induced colitis in rats. Eur J Biochem 232:603–610CrossRef PubMed
    6.Voigt T, Sebald HJ, Schoenauer R, Levano S, Girard T, Hoppeler HH, Babiychuk EB, Draeger A (2013) Annexin A1 is a biomarker of T-tubular repair in skeletal muscle of nonmyopathic patients undergoing statin therapy. FASEB J 27:2156–2164. doi:10.​1096/​fj.​12-219345 CrossRef PubMed
    7.Bizzarro V, Belvedere R, Dal Piaz F, Parente L, Petrella A (2012) Annexin A1 induces skeletal muscle cell migration acting through formyl peptide receptors. PLoS One 7:e48246. doi:10.​1371/​journal.​pone.​0048246 PubMedCentral CrossRef PubMed
    8.D’Acunto CW, Gbelcova H, Festa M, Ruml T (2014) The complex understanding of Annexin A1 phosphorylation. Cell Signal 26:173–178. doi:10.​1016/​j.​cellsig.​2013.​09.​020 CrossRef PubMed
    9.Bizzarro V, Fontanella B, Franceschelli S, Pirozzi M, Christian H, Parente L, Petrella A (2010) Role of Annexin A1 in mouse myoblast cell differentiation. J Cell Physiol 224:757–765. doi:10.​1002/​jcp.​22178 CrossRef PubMed
    10.Matsumura CY, Menezes de Oliveira B, Durbeej M, Marques MJ (2013) Isobaric Tagging-Based Quantification for Proteomic Analysis: a comparative study of spared and affected muscles from mice at the early phase of dystrophy. PLoS One 8:e65831. doi:10.​1371/​journal.​pone.​0065831 PubMedCentral CrossRef PubMed
    11.Holland A, Dowling P, Zweyer M, Swandulla D, Henry M, Clynes M, Ohlendieck K (2013) Proteomic profiling of cardiomyopathic tissue from the aged mdx model of Duchenne muscular dystrophy reveals a drastic decrease in laminin, nidogen and annexin. Proteomics 13:2312–2323. doi:10.​1002/​pmic.​201200578 CrossRef PubMed
    12.Chan XC, McDermott JC, Siu KW (2007) Identification of secreted proteins during skeletal muscle development. J Proteome Res 6:698–710. doi:10.​1021/​pr060448k CrossRef PubMed
    13.Henningsen J, Rigbolt KT, Blagoev B, Pedersen BK, Kratchmarova I (2010) Dynamics of the skeletal muscle secretome during myoblast differentiation. Mol Cell Proteomics 9:2482–2496. doi:10.​1074/​mcp.​M110.​002113 PubMedCentral CrossRef PubMed
    14.Wein S, Fauroux M, Laffitte J, de Nadai P, Guaini C, Pons F, Comera C (2004) Mediation of annexin 1 secretion by a probenecid-sensitive ABC-transporter in rat inflamed mucosa. Biochem Pharmacol 67:1195–1202. doi:10.​1016/​j.​bcp.​2003.​11.​015 CrossRef PubMed
    15.Goto-Inoue N, Yamada K, Inagaki A, Furuichi Y, Ogino S, Manabe Y, Setou M, Fujii NL (2013) Lipidomics analysis revealed the phospholipid compositional changes in muscle by chronic exercise and high-fat diet. Sci Rep 3:3267. doi:10.​1038/​srep03267 PubMedCentral CrossRef PubMed
    16.Goto-Inoue N, Manabe Y, Miyatake S, Ogino S, Morishita A, Hayasaka T, Masaki N, Setou M, Fujii NL (2012) Visualization of dynamic change in contraction-induced lipid composition in mouse skeletal muscle by matrix-assisted laser desorption/ionization imaging mass spectrometry. Anal Bioanal Chem 403:1863–1871. doi:10.​1007/​s00216-012-5809-x CrossRef PubMed
    17.Manabe Y, Miyatake S, Takagi M, Nakamura M, Okeda A, Nakano T, Hirshman MF, Goodyear LJ, Fujii NL (2012) Characterization of an acute muscle contraction model using cultured C2C12 myotubes. PLoS One 7:e52592. doi:10.​1371/​journal.​pone.​0052592 PubMedCentral CrossRef PubMed
    18.Manabe Y, Takagi M, Nakamura-Yamada M, Goto-Inoue N, Taoka M, Isobe T, Fujii NL (2014) Redox proteins are constitutively secreted by skeletal muscle. J Physiol Sci 64:401–409. doi:10.​1007/​s12576-014-0334-7 CrossRef PubMed
    19.Ritchie RH, Gordon JM, Woodman OL, Cao AH, Dusting GJ (2005) Annexin-1 peptide Anx-1(2-26) protects adult rat cardiac myocytes from cellular injury induced by simulated ischaemia. Br J Pharmacol 145:495–502. doi:10.​1038/​sj.​bjp.​0706211 PubMedCentral CrossRef PubMed
    20.Fujita H, Nedachi T, Kanzaki M (2007) Accelerated de novo sarcomere assembly by electric pulse stimulation in C2C12 myotubes. Exp Cell Res 313:1853–1865. doi:10.​1016/​j.​yexcr.​2007.​03.​002 CrossRef PubMed
    21.Thery C, Ostrowski M, Segura E (2009) Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 9:581–593. doi:10.​1038/​nri2567 CrossRef PubMed
    22.Guescini M, Guidolin D, Vallorani L, Casadei L, Gioacchini AM, Tibollo P, Battistelli M, Falcieri E, Battistin L, Agnati LF, Stocchi V (2010) C2C12 myoblasts release micro-vesicles containing mtDNA and proteins involved in signal transduction. Exp Cell Res 316:1977–1984. doi:10.​1016/​j.​yexcr.​2010.​04.​006 CrossRef PubMed
    23.Qin C, Buxton KD, Pepe S, Cao AH, Venardos K, Love JE, Kaye DM, Yang YH, Morand EF, Ritchie RH (2013) Reperfusion-induced myocardial dysfunction is prevented by endogenous annexin-A1 and its N-terminal-derived peptide Ac-ANX-A1(2-26). Br J Pharmacol 168:238–252. doi:10.​1111/​j.​1476-5381.​2012.​02176.​x PubMedCentral CrossRef PubMed
    24.Hartwig S, Raschke S, Knebel B, Scheler M, Irmler M, Passlack W, Muller S, Hanisch FG, Franz T, Li X, Dicken HD, Eckardt K, Beckers J, de Angelis MH, Weigert C, Haring HU, Al-Hasani H, Ouwens DM, Eckel J, Kotzka J, Lehr S (2014) Secretome profiling of primary human skeletal muscle cells. Biochim Biophys Acta 1844:1011–1017. doi:10.​1016/​j.​bbapap.​2013.​08.​004 CrossRef PubMed
    25.Lim LH, Pervaiz S (2007) Annexin 1: the new face of an old molecule. FASEB J 21:968–975. doi:10.​1096/​fj.​06-7464rev CrossRef PubMed
    26.Rescher U, Goebeler V, Wilbers A, Gerke V (2006) Proteolytic cleavage of annexin 1 by human leukocyte elastase. Biochim Biophys Acta 1763:1320–1324. doi:10.​1016/​j.​bbamcr.​2006.​08.​041 CrossRef PubMed
    27.Cheng X, Zhang X, Gao Q, Ali Samie M, Azar M, Tsang WL, Dong L, Sahoo N, Li X, Zhuo Y, Garrity AG, Wang X, Ferrer M, Dowling J, Xu L, Han R, Xu H (2014) The intracellular Ca(2)(+) channel MCOLN1 is required for sarcolemma repair to prevent muscular dystrophy. Nat Med 20:1187–1192. doi:10.​1038/​nm.​3611 PubMedCentral CrossRef PubMed
    28.La M, D’Amico M, Bandiera S, Di Filippo C, Oliani SM, Gavins FN, Flower RJ, Perretti M (2001) Annexin 1 peptides protect against experimental myocardial ischemia-reperfusion: analysis of their mechanism of action. FASEB J 15:2247–2256. doi:10.​1096/​fj.​01-0196com CrossRef PubMed
    29.Leikina E, Melikov K, Sanyal S, Verma SK, Eun B, Gebert C, Pfeifer K, Lizunov VA, Kozlov MM, Chernomordik LV (2013) Extracellular annexins and dynamin are important for sequential steps in myoblast fusion. J Cell Biol 200:109–123. doi:10.​1083/​jcb.​201207012 PubMedCentral CrossRef PubMed
    30.Ritchie RH, Sun X, Bilszta JL, Gulluyan LM, Dusting GJ (2003) Cardioprotective actions of an N-terminal fragment of annexin-1 in rat myocardium in vitro. Eur J Pharmacol 461:171–179. doi:10.​1016/​s0014-2999(03)01314-1 CrossRef PubMed
    31.Belvedere R, Bizzarro V, Popolo A, Dal Piaz F, Vasaturo M, Picardi P, Parente L, Petrella A (2014) Role of intracellular and extracellular annexin A1 in migration and invasion of human pancreatic carcinoma cells. BMC Cancer 14:961. doi:10.​1186/​1471-2407-14-961 PubMedCentral CrossRef PubMed
    32.Fry CS, Lee JD, Mula J, Kirby TJ, Jackson JR, Liu F, Yang L, Mendias CL, Dupont-Versteegden EE, McCarthy JJ, Peterson CA (2014) Inducible depletion of satellite cells in adult, sedentary mice impairs muscle regenerative capacity without affecting sarcopenia. Nat Med. doi:10.​1038/​nm.​3710 PubMedCentral PubMed
    33.Han R (2011) Muscle membrane repair and inflammatory attack in dysferlinopathy. Skelet Muscle 1:10. doi:10.​1186/​2044-5040-1-10 PubMedCentral CrossRef PubMed
    34.Lek A, Evesson FJ, Lemckert FA, Redpath GM, Lueders AK, Turnbull L, Whitchurch CB, North KN, Cooper ST (2013) Calpains, cleaved mini-dysferlinC72, and L-type channels underpin calcium-dependent muscle membrane repair. J Neurosci 33:5085–5094. doi:10.​1523/​JNEUROSCI.​3560-12.​2013 CrossRef PubMed
    35.Pedersen BK, Febbraio MA (2012) Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol 8:457–465. doi:10.​1038/​nrendo.​2012.​49 CrossRef PubMed
    36.Keller M, Ruegg A, Werner S, Beer HD (2008) Active caspase-1 is a regulator of unconventional protein secretion. Cell 132:818–831. doi:10.​1016/​j.​cell.​2007.​12.​040 CrossRef PubMed
  • 作者单位:Naoko Goto-Inoue (1)
    Kotaro Tamura (2)
    Fumika Motai (2)
    Miyuki Ito (2)
    Kaede Miyata (2)
    Yasuko Manabe (2)
    Nobuharu L. Fujii (2)

    1. Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, Kanagawa, 252-0880, Japan
    2. Department of Health Promotion Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 1-1, Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Biochemistry
    Medical Biochemistry
    Oncology
    Cardiology
  • 出版者:Springer Netherlands
  • ISSN:1573-4919
文摘
The main function of annexin A1 (ANXA1), a member of the annexin superfamily, is to bind to cellular membranes in a Ca2+-dependent manner. In skeletal muscle, ANXA1 is thought to be involved in the repair of damaged membrane tissue and in the migration of muscle cells. We hypothesized that ANXA1 is one of the myokines secreted during muscle contractions to accelerate the repair of cell damage after contraction. Here we performed cell contractions by electric pulse stimulation; the results revealed that a fragmented form of ANXA1 was cleaved by calpain and selectively secreted from skeletal muscle cells by contraction. We therefore realized that muscle-contraction-induced calpain-dependent ANXA1 fragmentation has a wound-healing effect on damaged cells. This suggested that not the intact form but rather fragmented ANXA1 is a contraction-induced myokine. Keywords Annexin A1 C2C12 myotubes Contraction Secretion

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700