Complete genome of Hainan papaya ringspot virus using small RNA deep sequencing
详细信息    查看全文
  • 作者:Yuliang Zhang (1)
    Naitong Yu (1)
    Qixing Huang (1)
    Guohua Yin (2)
    Anping Guo (1)
    Xiangfeng Wang (3)
    Zhongguo Xiong (3)
    Zhixin Liu (1)
  • 关键词:Papaya ringspot virus ; Small RNA sequencing ; Genome ; RT ; PCR
  • 刊名:Virus Genes
  • 出版年:2014
  • 出版时间:June 2014
  • 年:2014
  • 卷:48
  • 期:3
  • 页码:502-508
  • 全文大小:
  • 参考文献:1. U.G. Chandrika, E.R. Jansz, S. Wickramasinghe, N.D. Wamasuriya, J. Sci. Food Agric. 83, 1279-282 (2003) CrossRef
    2. S.D. Yeh, F.J. Jan, C.H. Chiang, T.J. Doong, M.C. Chen, P.H. Chung, H.J. Bau, J. Gen. Virol. 73, 2531-541 (1992) CrossRef
    3. F. Herold, J. Weibel, Virology 18, 302-11 (1962) CrossRef
    4. W.T. Shen, M.Q. Wang, P. Yan, L. Gao, P. Zhou, Acta Virol. 54, 49-4 (2010) CrossRef
    5. Y.W. Lu, W.T. Shen, P. Zhou, Q.J. Tang, Y.M. Niu, M. Peng, Z. Xiong, Arch. Virol. 153, 991-93 (2008) CrossRef
    6. Y.J. Kung, H.J. Bau, Y.L. Wu, C.H. Huang, T.M. Chen, S.D. Yeh, Phytopathology 99, 1312-320 (2009) CrossRef
    7. M. Roberts, D.A. Minott, S. Pinnock, P.F. Tennant, J.C. Jackson, J. Sci. Food Agric. 23, (2013). doi:10.1002/jsfa.6374
    8. G. Fermín, R.C. Keith, J.Y. Suzuki, S.A. Ferreira, D.A. Gaskill, K.Y. Pitz, R.M. Manshardt, D. Gonsalves, S. Tripathi, J. Agric. Food Chem. 59, 10006-0012 (2011) CrossRef
    9. M.J. Fan, S. Chen, Y.J. Kung, Y.H. Cheng, H.J. Bau, T.T. Su, S.D. Yeh, Transgenic Res. 18, 971-86 (2009) CrossRef
    10. Y.T. Lin, F.J. Jan, C.W. Lin, C.H. Chung, J.C. Chen, S.D. Yeh, H.M. Ku, PLoS One 8, e68749 (2013) CrossRef
    11. C.M. Kalleshwaraswamy, N.K. Kumar, Phytopathology. 98, 541-46 (2008) CrossRef
    12. R. Li, S. Gao, A.G. Hernandez, W.P. Wechter, Z. Fei, K.S. Ling, PLoS One 7, e37127 (2012) CrossRef
    13. G. Yin, Z. Sun, N. Liu, L. Zhang, Y. Song, C. Zhu, F. Wen, Appl. Microbiol. Biotechnol. 84, 323-33 (2009) CrossRef
    14. Z.N. Sun, Y.Z. Song, G.H. Yin, C.X. Zhu, F.J. Wen, J. Phytopathol. 158, 566-68 (2010) CrossRef
    15. Z.N. Sun, G.H. Yin, Y.Z. Song, H.L. An, C.X. Zhu, F.J. Wen, Appl. Biochem. Biotechnol. 162, 1901-914 (2010) CrossRef
    16. S. Mlotshwa, G.J. Pruss, V. Vance, Trends Plant Sci. 13, 375-82 (2008) CrossRef
    17. R. Aliyari, S.W. Ding, Immunol. Rev. 227, 176-88 (2009) CrossRef
    18. S.W. Ding, O. Voinnet, Cell 130, 413-26 (2007) CrossRef
    19. R. Margis, A.F. Fusaro, N.A. Smith, S.J. Curtin, J.M. Watson, E.J. Finnegan, P.M. Waterhouse, FEBS Lett. 580, 2442-450 (2006) CrossRef
    20. J.F. Kreuze, A. Perez, M. Untiveros, D. Quispe, S. Fuentes, I. Barker, R. Simon, Virology 388, 1- (2009) CrossRef
    21. B. Navarro, V. Pantaleo, A. Gisel, S. Moxon, T. Dalmay, G. Bisztray, F. Di Serio, J. Burgyán, PLoS One 4, e7686 (2009) CrossRef
    22. Q. Wu, Y. Luo, R. Lu, N. Lau, E.C. Lai, W.X. Li, S.W. Ding, Proc. Natl. Acad. Sci. USA 107, 1606-611 (2010) CrossRef
    23. M. Ma, Y. Huang, Z. Gong, L. Zhuang, C. Li, H. Yang, Y. Tong, W. Liu, W. Cao, PLoS One 6, e24758 (2011) CrossRef
    24. A. Giampetruzzi, V. Roumi, R. Roberto, U. Malossini, N. Yoshikawa, P. La Notte, F. Terlizzi, R. Credi, P. Saldarelli, Virus Res. 163, 262-68 (2012) CrossRef
    25. D.A. Marston, L.M. McElhinney, R.J. Ellis, D.L. Horton, E.L. Wise, S.L. Leech, D. David, X. de Lamballerie, A.R. Fooks, BMC Genom. 14, 444 (2013) CrossRef
    26. H. Wang, J. Xie, T.G. Shreeve, J. Ma, D.W. Pallett, L.A. King, R.D. Possee, PLoS One 8, e74508 (2013) CrossRef
    27. M.C. Vives, K. Velázquez, J.A. Pina, P. Moreno, J. Guerri, L. Navarro, Phytopathology 103, 1077-086 (2013) CrossRef
    28. B. Langmead, C. Trapnell, M. Pop, S.L. Salzberg, Genome Biol. 10, R25 (2009) CrossRef
    29. N. Saitou, M. Nei, Mol. Biol. Evol. 4, 406-25 (1987)
    30. J. Felsenstein, Evolution 39, 783-91 (1985) CrossRef
    31. M. Nei, S. Kumar, / Molecular evolution and phylogenetics (Oxford University Press, New York, 2000)
    32. K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, S. Kumar, Mol. Biol. Evol. 28, 2731-739 (2011) CrossRef
    33. D.P. Martin, P. Lemey, M. Lott, V. Moulton, D. Posada, P. Lefeuvre, Bioinformatics 26, 2462-463 (2010) CrossRef
    34. A.J. Hamilton, D.C. Baulcombe, Science 286, 950-52 (1999) CrossRef
    35. D. Livia, W. Yu, G. Daniel, F.M. Klaus, A.A. Miguel, L. César, Virology 392, 203-14 (2009) CrossRef
    36. T. Yamanaka, H. Komatani, T. Meshi, S. Naito, M. Ishikawa, T. Ohno, Virus Genes 16, 173-76 (1998) CrossRef
    37. T. Jin, Y. Qi, B. Qi, H. Jin, Y. Huang, Virus Genes 14, 201-10 (1997) CrossRef
    38. M. Isogai, P.Q. Cabauatan, C. Masuta, I. Uyeda, O. Azzam, Virus Genes 20, 79-5 (2000) CrossRef
  • 作者单位:Yuliang Zhang (1)
    Naitong Yu (1)
    Qixing Huang (1)
    Guohua Yin (2)
    Anping Guo (1)
    Xiangfeng Wang (3)
    Zhongguo Xiong (3)
    Zhixin Liu (1)

    1. Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
    2. College of Agriculture & Life Sciences, University of Arizona, Tucson, AZ, 85721, USA
    3. BIO5 Institute and School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
  • ISSN:1572-994X
文摘
Small RNA deep sequencing allows for virus identification, virus genome assembly, and strain differentiation. In this study, papaya plants with virus-like symptoms collected in Hainan province were used for deep sequencing and small RNA library construction. After in silicon subtraction of the papaya sRNAs, small RNA reads were used to in the viral genome assembly using a reference-guided, iterative assembly approach. A nearly complete genome was assembled for a Hainan isolate of papaya ringspot virus (PRSV-HN-2). The complete PRSV-HN-2 genome (accession no.: KF734962) was obtained after a 15-nucleotide gap was filled by direct sequencing of the amplified genomic region. Direct sequencing of several random genomic regions of the PRSV isolate did not find any sequence discrepancy with the sRNA-assembled genome. The newly sequenced PRSV-HN-2 genome shared a nucleotide identity of 96 and 94?% to that of the PRSV-HN (EF183499) and PRSV-HN-1 (HQ424465) isolates, and together with these two isolates formed a new PRSV clade. These data demonstrate that the small RNA deep sequencing technology provides a viable and rapid mean to assemble complete viral genomes in plants.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700