Role of berberine in anti-bacterial as a high-affinity LPS antagonist binding to TLR4/MD-2 receptor
详细信息    查看全文
  • 作者:Ming Chu (10)
    Ran Ding (11)
    Zheng-yun Chu (11)
    Ming-bo Zhang (11)
    Xiao-yan Liu (10)
    Shao-hua Xie (10)
    Yan-jun Zhai (11)
    Yue-dan Wang (10)
  • 刊名:BMC Complementary and Alternative Medicine
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:14
  • 期:1
  • 全文大小:397 KB
  • 参考文献:1. Asai M, Iwata N, Yoshikawa A, Aizaki Y, Ishiura S, Saido TC, Maruyama K: Berberine alters the processing of Alzheimer’s amyloid precursor protein to decrease Abeta secretion. / Biochem Biophys Res Commun 2007, 352:498-02. CrossRef
    2. Mantena SK, Sharma SD, Katiyar SK: Berberine, a natural product, induces G1-phase cell cycle arrest and caspase-3-dependent apoptosis in human prostate carcinoma cells. / Mol Cancer Ther 2006, 5:296-08. CrossRef
    3. Kuo CL, Chi CW, Liu TY: The anti-inflammatory potential of berberine in vitro and in vivo. / Cancer Lett 2004, 203:127-37. CrossRef
    4. Hui Dong NW, Li Z, Fuer L: Berberine in the treatment of type2 diabetesmellitus: a systemic review and meta-analysis. Evid based complement. / Alternat Med 2012, 2012:591654.
    5. Lin Y, Zhou Z, Shen W, Shen J, Hu M, Zhang F, Hu P, Xu M, Huang S, Zheng Y: Clinical and experimental studies on shallow needling technique for treating childhood diarrhea. / J Tradit Chin Med 1993, 13:107-14.
    6. Rabbani GH, Butler T, Knight J, Sanyal SC, Alam K: Randomized controlled trial of berberine sulfate therapy for diarrhea due to enterotoxigenic Escherichia coli and Vibrio cholerae. / J Infect Dis 1987, 155:979-84. CrossRef
    7. Thomas L: The physiological disturbances produced by endotoxins. / Annu Rev Physiol 1954, 16:467-90. CrossRef
    8. Leonardo MR, Silva RA, Assed S, Nelson-Filho P: Importance of bacterial endotoxin (LPS) in endodontics. / J Appl Oral Sci 2004, 12:93-8.
    9. Panda SK, Kumar S, Tupperwar NC, Vaidya T, George A, Rath S, Bal V, Ravindran B: Chitohexaose activates macrophages by alternate pathway through TLR4 and blocks endotoxemia. / PLoS Pathog 2012, 8:e1002717. CrossRef
    10. Gattis SG, Chung HS, Trent MS, Raetz CR: The Origin of 8-Amino-3, 8-dideoxy-D-manno-octulosonic Acid (Kdo8N) in the Lipopolysaccharide of Shewanella oneidensis. / J Biol Chem 2013, 288:9216-225. CrossRef
    11. Herath TD, Darveau RP, Seneviratne CJ, Wang CY, Wang Y, Jin L: Tetra- and penta-acylated lipid a structures of porphyromonas gingivalis LPS differentially activate TLR4-mediated NF-κB signal transduction cascade and immuno-inflammatory response in human gingival fibroblasts. / PLoS One 2013, 8:e58496. CrossRef
    12. Ohto U, Fukase K, Miyake K, Shimizu T: Structural basis of species-specific endotoxin sensing by innate immune receptor TLR4/MD-2. / Proc Natl Acad Sci USA 2012, 109:7421-426. CrossRef
    13. Peri F, Piazza M, Calabrese V, Damore G, Cighetti R: Exploring the LPS/TLR4 signal pathway with small molecules. / Biochem Soc Trans 2010, 38:1390-395. CrossRef
    14. Beutler B, Jiang Z, Georgel P, Crozat K, Croker B, Rutschmann S, Du X, Hoebe K: Genetic analysis of host resistance: toll-like receptor signaling and immunity at large. / Annu Rev Immunol 2006, 24:353-89. CrossRef
    15. Beutler B: TLR4 as the mammalian endotoxin sensor. / Curr Top Microbiol Immunol 2002, 270:109-20.
    16. Shimazu R, Akashi S, Ogata H, Nagai Y, Fukudome K, Miyake K, Kimoto M: MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. / J Exp Med 1999, 189:1777-782. CrossRef
    17. Nagai Y, Akashi S, Nagafuku M, Ogata M, Iwakura Y, Akira S, Kitamura T, Kosugi A, Kimoto M, Miyake K: Essential role of MD-2 in LPS responsiveness and TLR4 distribution. / Nat Immunol 2002, 3:667-72.
    18. Beutler B, Rietschel ET: Innate immune sensing and its roots: the story of endotoxin. / Nat Rev Immunol 2003, 3:169-76. CrossRef
    19. Lacatus M: Innate immunity in surgical patients. / Chirurgia (Bucur) 2013, 108:18-5.
    20. Salomao R, Brunialti MK, Rapozo MM, Baggio-Zappia GL, Galanos C, Freudenberg M: Bacterial sensing, cell signaling, and modulation of the immune response during sepsis. / Shock 2012, 38:227-42. CrossRef
    21. Watanabe S, Kumazawa Y, Liposomal IJ: Lipopolysaccharide initiates TRIF-dependent signaling pathway independent of CD14. / PLoS One 2013, 8:e60078. CrossRef
    22. Vandenbon A, Teraguchi S, Akira S, Takeda K, Standley DM: Systems biology approaches to toll-like receptor signaling. / Wiley Interdiscip Rev Syst Biol Med 2012, 4:497-07. CrossRef
    23. Schindler R, Gelfand JA, Dinarello CA: Recombinant C5a stimulates transcription rather than translation of interleukin-1 (IL-1) and tumor necrosis factor: translational signal provided by lipopolysaccharide or IL-1 itself. / Blood 1990, 76:1631-638.
    24. Gautron L, Lafon P, Chaigniau M: Tramu G, and Laye S (2002) Spatiotemporal analysis of signal transducer and activator of transcription 3 activation in rat brain astrocytes and pituitary following peripheral immune challenge. / Neuroscience 2002, 112:717-29. CrossRef
    25. Liang YC, Liu HJ, Chen SH, Chen CC, Chou LS, Tsai LH: Effect of lipopolysaccharide on diarrhea and gastrointestinal transit in mice: roles of nitric oxide and prostaglandin E2. / World J Gastroenterol 2005, 11:357-61.
    26. Slivka PF, Shridhar M, Lee GI, Sammond DW, Hutchinson MR, Martinko AJ, Buchanan MM, Sholar PW, Kearney JJ, Harrison JA, Watkins LR, Yin H: A peptide antagonist of the TLR4-MD2 interaction. / Chembiochem 2009, 10:645-49. CrossRef
    27. DeLeo JA, Tanga FY, Tawfik VL: Neuroimmune activation and neuroinflammation in chronic pain and opioid tolerance/hyperalgesia. / Neuroscientist 2004, 10:40-2. CrossRef
    28. Leon CG, Tory R, Jia J, Sivak O, Wasan KM: Discovery and development of toll-like receptor 4 (TLR4) antagonists:a new paradigm for treating sepsis and other diseases. / Pharm Res 2008, 25:1751-761. CrossRef
    29. Hutchinson MR, Zhang Y, Brown K, Coats BD, Shridhar M, Sholar PW, Patel SJ, Crysdale NY, Harrison JA, Maier SF, Rice KC, Watkins LR: Non-stereoselective reversal of neuropathic pain by naloxone and naltrexone: involvement of toll-like receptor 4 (TLR4). / Eur J Neurosci 2008, 28:20-9. CrossRef
    30. Yang J, Wang HD, Lu DX, Wang YP, Qi RB, Li J, Li F, Li CJ: Effects of neutral sulfate berberine on LPS-induced cardiomyocyte TNF-alpha secretion, abnormal calcium cycling, and cardiac dysfunction in rats. / Acta Pharmacol Sin 2006, 27:173-78. CrossRef
    31. Lee DU, Kang YJ, Park MK, Lee YS, Seo HG, Kim TS, Kim CH, Chang KC: Effects of 13-alkyl-substituted berberine alkaloids on the expression of COX-II, TNF-alpha, iNOS, and IL-12 production in LPS-stimulated macrophages. / Life Sci 2003, 73:1401-412. CrossRef
    32. Li F, Wang HD, Lu DX, Wang YP, Qi RB, Fu YM, Li CJ: Neutral sulfate berberine modulates cytokine secretion and increases survival in endotoxemic mice. / Acta Pharmacol Sin 2006, 27:1199-205. CrossRef
    33. Gu L, Li N, Gong J, Li Q, Zhu W, Li J: Berberine ameliorates intestinal epithelial tight-junction damage and down-regulates myosin light chain kinase pathways in a mouse model of endotoxinemia. / J Infect Dis 2011, 203:1602-612. CrossRef
    34. Li HM, Wang YY, Wang HD, Cao WJ, Yu XH, Lu DX, Qi RB, Hu CF, Yan YX: Berberine protects against lipopolysaccharide-induced intestinal injury in mice via alpha 2 adrenoceptor-independent mechanisms. / Acta Pharmacol Sin 2011, 32:1364-372. CrossRef
    35. Zhang Q, Piao XL, Piao XS, Lu T, Wang D, Kim SW: Preventive effect of Coptis chinensis and berberine on intestinal injury in rats challenged with lipopolysaccharides. / Food Chem Toxicol 2011, 49:61-9. CrossRef
    36. Park BS, Song DH, Kim HM, Choi BS, Lee H, Lee JO: The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. / Nature 2009, 458:1191-195. CrossRef
    37. Ohto U, Fukase K, Miyake K, Satow Y: Crystal structures of human MD-2 and its complex with antiendotoxic lipid IVa. / Science 2007, 316:1632-634. CrossRef
    38. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ: AutoDock4 and Auto-DockTools4: automated docking with selective receptor flexibility. / J Comput Chem 2009, 30:2785-791. CrossRef
    39. Hammesfahr B, Odronitz F, Mühlhausen S, Waack S, Kollmar M: GenePainter: a fast tool for aligning gene structures of eukaryotic protein families, visualizing the alignments and mapping gene structures onto protein structures. / BMC Bioinforma 2013, 14:77. CrossRef
    40. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ: Gromacs: fast, flexible, and free. / J Comput Chem 2005, 26:1701-718. CrossRef
    41. Pronk S, Páll S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, Shirts MR, Smith JC, Kasson PM, van der Spoel D, Hess B, Lindahl E: GROMACS 4.5:a high-throughput and highly parallel open source molecular simulation toolkit. / Bioinformatics 2013, 29:845-54. CrossRef
    42. Schüttelkopf AW, van Aalten DMF: PRODRG-a tool for high-throughput crystallography of protein-ligand complexes. / Acta Crystallogr 2004, D60:1355-363.
    43. Oostenbrink C, Villa A, Mark AE, van Gunsteren WF: A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. / J Comput Chem 2004, 25:1656-676. CrossRef
    44. Eslami H, Mojahedi F, Moghadasi J: Molecular dynamics simulation with weak coupling to heat and material baths. / J Chem Phys 2010, 133:084105. CrossRef
    45. Shen T, Wong CF, McCammon JA: Atomistic Brownian dynamics simulation of peptide phosphorylation. / J Am Chem Soc 2001, 123:9107-111. CrossRef
    46. Miyamoto S, Kollman PA: SETTLE: an analytical version of the SHAKE and RATTLE algorithms for rigid water models. / J Comp Chem 1992, 13:952-62. CrossRef
    47. Lama D, Modi V, Sankararamakrishnan R: Behavior of solvent-exposed hydrophobic groove in the anti-apoptotic Bcl-XL protein: clues for its ability to bind diverse BH3 ligands from MD simulations. / PLoS One 2013, 8:e54397. CrossRef
    48. Isele-Holder RE, Mitchell W, Ismail AE: Development and application of a particle-particle particle-mesh Ewald method for dispersion interactions. / J Chem Phys 2012, 137:174107. CrossRef
    49. Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC: CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. / Science 1990, 249:1431-433. CrossRef
    50. Gioannini TL, Weiss JP: Regulation of interactions of Gram-negative bacterial endotoxins with mammalian cells. / Immunol Res 2007, 39:249-60. CrossRef
    51. Miyake K: Innate immune sensing of pathogens and danger signals by cell surface Toll-like receptors. / Semin Immunol 2007, 19:3-0. CrossRef
    52. Tobias PS, Soldau K, Ulevitch RJ: Isolation of a lipopolysaccharide-binding acute phase reactant from rabbit serum. / J Exp Med 1986, 164:777-93. CrossRef
    53. Wright SD, Tobias PS, Ulevitch RJ, Ramos RA: Lipopolysaccharide (LPS) binding protein opsonizes LPS-bearing particles for recognition by a novel receptor on macrophages. / J Exp Med 1989, 170:1231-241. CrossRef
    54. The pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/1472-6882/14/89/prepub
  • 作者单位:Ming Chu (10)
    Ran Ding (11)
    Zheng-yun Chu (11)
    Ming-bo Zhang (11)
    Xiao-yan Liu (10)
    Shao-hua Xie (10)
    Yan-jun Zhai (11)
    Yue-dan Wang (10)

    10. Department of Immunology, School of Basic Medical Sciences, Peking University, No.38, Xueyuan Road, Haidian District, Beijing, 100191, China
    11. Pharmacy Departments, Liao Ning University of Traditional Chinese Medicine, Liao Ning, 116600, China
  • ISSN:1472-6882
文摘
Background Berberine is an isoquinoline alkaloid mainly extracted from Rhizoma Coptidis and has been shown to possess a potent inhibitory activity against bacterial. However, the role of berberine in anti-bacterial action has not been extensively studied. Methods The animal model was established to investigate the effects of berberine on bacterial and LPS infection. Docking analysis, Molecular dynamics simulations and Real-time RT-PCR analysis was adopted to investigate the molecular mechanism. Results Treatment with 40?mg/kg berberine significantly increased the survival rate of mice challenged with Salmonella typhimurium (LT2), but berberine show no effects in bacteriostasis. Further study indicated that treatment with 0.20?g/kg berberine markedly increased the survival rate of mice challenged with 2 EU/ml bacterial endotoxin (LPS) and postpone the death time of the dead mice. Moreover, pretreatment with 0.05?g/kg berberine significantly lower the increasing temperature of rabbits challenged with LPS. The studies of molecular mechanism demonstrated that Berberine was able to bind to the TLR4/MD-2 receptor, and presented higher affinity in comparison with LPS. Furthermore, berberine could significantly suppressed the increasing expression of NF-κB, IL-6, TNFα, and IFNβ in the RAW264.7 challenged with LPS. Conclusion Berberine can act as a LPS antagonist and block the LPS/TLR4 signaling from the sourse, resulting in the anti-bacterial action.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700