Native Lespedeza species harbor greater non-rhizobial bacterial diversity in root nodules compared to the coexisting invader, L. cuneata
详细信息    查看全文
  • 作者:Ryan R. Busby ; Giselle Rodriguez ; Dick L. Gebhart ; Anthony C. Yannarell
  • 关键词:Lespedeza ; Nodule bacteria ; Legume ; Plant invasion ; Microbial diversity
  • 刊名:Plant and Soil
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:401
  • 期:1-2
  • 页码:427-436
  • 全文大小:640 KB
  • 参考文献:Annapurna K, Ramadoss D, Bose P, VithalKumar L (2013) In situ localization of Paenibacillus polymyxa HKA-15 in roots and root nodules of soybean (Glycine max. L.). Plant Soil 373:641–648CrossRef
    Aserse AA, Räsänen LA, Aseffa F, Hailemariam A, Lindström K (2013) Diversity and sporadic symbionts and nonsymbiotic endophytic bacteria isolated from nodules of woody, shrub, and food legumes in Ethiopia. Appl Microbiol Biot 97:10117–10134CrossRef
    Bai Y, D’Aoust F, Smith DL, Driscoll BT (2002) Isolation of plant-growth-promoting Bacillus strains from soybean root nodules. Can J Microbiol 48:230–238CrossRef PubMed
    Bai Y, Zhou X, Smith DL (2003) Enhanced soybean plant growth resulting from coinoculation of Bacillus strains with Bradyrhizobium japonicum. Crop Sci 43:1774–1781CrossRef
    Baldwin JG, Barker KR, Nelson LA (1979) Effect of Meloidogyne incognita on nitrogen fixation in soybean. J Nematol 11:156–161PubMed PubMedCentral
    Boukhatem AF, Domergue O, Bekki A, Merabet C, Sekkour S, Bouazza F, Duponnois R, de Lajudie P, Galiana A (2012) Symbiotic characterization and diversity of rhizobia associated with native and introduced acacias in arid and semi-arid regions of Algeria. FEMS Microbiol Ecol 80:534–547CrossRef PubMed
    Burke JM, Miller JE, Mosjidis JA, Terrill TH (2012) Grazing sericea lespedeza for control of gastrointestinal nematodes in lambs. Vet Parasitol 186:507–512CrossRef PubMed
    Callaway RM, Bedmar EJ, Reinhart KO, Silvan CG, Klironomos J (2011) Effects of soil biota from different ranges on Robinia invasion: acquiring mutualists and escaping pathogens. Ecology 92:1027–1035CrossRef PubMed
    Callaway RM, Thelen GC, Rodriguez A, Holben WE (2004) Soil biota and exotic plant invasion. Nature 427:731–733CrossRef PubMed
    Dudeja SS, Giri R, Saini R, Suneja-Madan P, Kothe E (2012) Interaction of endophytic microbes with legumes. J Basic Microb 52:248–260CrossRef
    Erdman LW (1950) The effectivity of different strains of Rhizobium on annual and perennial lespedezas. Soil Sci Soc Am Pro 15:173–176CrossRef
    Gu CT, Wang ET, Sui XH, Chen WF, Chen WX (2007) Diversity and geographical distribution of rhizobia associated with Lespedeza spp. in temperate and subtropical regions of China. Arch Microbiol 188:355–365CrossRef PubMed
    Horiuchi J, Prithiviraj B, Bais HP, Kimball BA, Vivanco JM (2005) Soil nematodes mediate positive interactions between legume plants and rhizobium bacteria. Planta 222:848–857CrossRef PubMed
    Hu L, Busby RR, Gebhart DL, Yannarell AC (2014) Invasive Lespedeza cuneata and native Lespedeza virginica experience asymmetrical benefits from rhizobial symbionts. Plant Soil 384:315–325CrossRef
    Huber T, Faulkner G, Hugenholtz P (2004) Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20:2317–2319CrossRef PubMed
    Hung PQ, Kumar SM, Govindsamy V, Annapurna K (2007) Isolation and characterization of endophytic bacteria from wild and cultivated soybean varieties. Biol Fert Soils 44:155–162CrossRef
    Hungria M, Nogueira MA, Araujo RS (2013) Co-inoculation of soybeans and common beans with rhizobia and azospirilla: strategies to improve sustainability. Biol Fert Soils 49:791–801CrossRef
    Ibáñez F, Angelini J, Taurian T, Tonelli ML, Fabra A (2009) Endophytic occupation of peanut root nodules by opportunistic Gammaproteobacteria. Syst Appl Microbiol 32:49–55CrossRef PubMed
    Ibewiro B, Sanginga N, Vanlauwe B, Merckx R (2000) Influence of phytoparasitic nematodes on symbiotic N2 fixation in tropical herbaceous legume cover crops. Biol Fert Soils 31:254–260CrossRef
    Kardol P, Cregger MA, Campany CE, Classen AT (2010) Soil ecosystem functioning under climate change: plant species and community effects. Ecology 91:767–781CrossRef PubMed
    Keane RM, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol 17:164–170CrossRef
    Kommuru DS, Barker T, Desai S, Burke JM, Ramsay A, Mueller-Harvey I, Miller JE, Mosjidis JS, Kamisetti N, Terrill TH (2014) Use of pelleted sericea lespedeza (Lespedeza cuneata) for natural control of coccidian and gastrointestinal nematodes in weaned goats. Vet Parasitol 204:191–198CrossRef PubMed
    Kumar V, Pathak CV, Dudeja SS, Saini R, Giri R, Narula S, Anand RC (2013) Legume nodule endophytes more diverse than endophytes from roots of legumes or non legumes in soils of Haryana, India. J Microbiol Biotechnol Res 3:83–92
    Lei X, Wang ET, Chen WF, Sui XH, Chen WX (2008) Diverse bacteria isolated from root nodules of wild Vicia species grown in temperate region of China. Arch Microbiol 190:657–671CrossRef PubMed
    Leyns F, De Cleene M, Swings JG, De Ley J (1984) The host range of the genus Xanthomonas. Bot Rev 50:308–356CrossRef
    Mishra PK, Mishra S, Selvakumar G, Kundu S, Gupta HS (2009) Enhanced soybean (Glycine max L.) plant growth and nodulation by Bradyrhizobium japonicum-SB1 in presence of Bacillus thuringiensis-KR1. Acta Agric Scand Sect B Soil Plant Sci 59:189–196
    Naisbitt T, James EK, Sprent JL (1992) The evolutionary significance of the legume genus Chamaechrista, as determined by nodule structure. New Phytol 122:487–492CrossRef
    Palaniappan P, Chauhan PS, Saravanan VS, Anandham R, Sa T (2010) Isolation and characterization of plant growth promoting endophytic bacterial isolates from root nodule of Lespedeza sp. Biol Fert Soils 46:807–816CrossRef
    Pandya M, Kumar GN, Rajkumar S (2013) Invasion of rhizobial infection thread by non-rhizobia for colonization of Vigna radiata root nodules. FEMS Microbiol Lett 348:58–65CrossRef PubMed
    Parker MA (2001) Mutualism as a constraint on invasion success for legumes and rhizobia. Divers Distrib 7:125–136CrossRef
    Parker MA, Malek W, Parker IM (2006) Growth of an invasive legume is symbiont limited in newly occupied habitats. Divers Distrib 12:563–571CrossRef
    Parker MA, Wurtz AK, Paynter Q (2007) Nodule symbiosis of invasive Mimosa pigra in Australia and in ancestral habitats: a comparative analysis. Biol Invasions 9:127–138CrossRef
    Pérez-Fernández MA, Lamont BB (2003) Nodulation and performance of exotic and native legumes in Australian soils. Aust J Bot 51:543–553CrossRef
    Peterson AT, Papes M, Kluze DA (2003) Predicting the potential invasive distributions of four alien plant species in North America. Weed Sci 51:863–868CrossRef
    van der Putten WH, Klironomos JN, Wardle DA (2007) Microbial ecology of biological invasions. ISME J 1:28–37CrossRef PubMed
    Reinhart KO, Callaway RM (2006) Soil biota and invasive plants. New Phytol 170:445–457CrossRef PubMed
    Richardson DM, Allsopp N, D’Antonio CM, Milton SJ, Rejmánek M (2000) Plant invasions- the role of mutualisms. Biol Rev 75:65–93CrossRef PubMed
    Rodríguez-Echeverría S, Crisóstomo JA, Nabais C, Freitas H (2009) Belowground mutualists and the invasive ability of Acacia longifolia in coastal dunes of Portugal. Biol Invasions 11:651–661CrossRef
    Ródriguez-Echeverría S, Fajardo S, Ruiz-Díez B, Fernández-Pascual M (2012) Differential effectiveness of novel and old legume-rhizobia mutualisms: implications for invasion by exotic legumes. Oecologia 170:253–261CrossRef PubMed
    Selvakumar G, Kundu S, Gupta AD, Shouche YS, Gupta HS (2008) Isolation and characterization of nonrhizobial plant growth promoting bacteria from nodules of kudzu (Pueraria thunbergiana) and their effect on wheat seedling growth. Curr Microbiol 56:134–139CrossRef PubMed
    Selvakumar G, Panneerselvam P, Ganeshamurthy AN (2013) Legume root nodule associated bacteria. In: Aurora NK (ed) Plant microbe symbiosis: fundamentals and advances. Springer, New Delhi, pp. 215–232CrossRef
    Sprent JI (2001) Nodulation in legumes. Royal Botanic Gardens, London
    Sturz AV, Christie BR, Matheson BG, Nowak J (1997) Biodiversity of endophytic bacteria which colonize red clover nodules, roots, stems and foliage and their influence on host growth. Biol Fert Soils 25:13–19CrossRef
    Talbot G, Topp E, Palin MF, Massé DI (2008) Evaluation of molecular methods used for establishing the interactions and functions of microorganisms in anaerobic bioreactors. Water Res 42:513–537CrossRef PubMed
    Tang J, Bromfield ESP, Rodrigue N, Cloutier S, Tambong JT (2012) Microevolution of symbiotic Bradyrhizobium populations associated with soybeans in east North America. Ecol Evol 2:2943–2961CrossRef PubMed PubMedCentral
    Tariq M, Hameed S, Yasmeen T, Ali A (2012) Non-rhizobial bacteria for improved nodulation and grain yield of mung bean [Vigna radiata (L.) Wilczek]. Afr J Biotechn 11:15012–15019
    Tariq M, Hameed S, Yasmeen T, Zahid M, Zafar M (2014) Molecular characterization and identification of plant growth promoting endophytic bacteria isolated from the root nodules of pea (Pisum sativum L.). World J Microb Biot 30:719–725CrossRef
    Taurian T, Ibanéz F, Angelini J, Tonelli ML, Fabra A (2012) Endophytic bacteria and their role in legumes growth promotion. In: Maheshwari DK (ed) Bacteria in agrobiology: plant probiotics. Springer-Verlag, Berlin, pp. 141–168CrossRef
    Trujillo ME, Alonso-Vega P, Rodríguez R, Carro L, Cerda E, Alonso P, Martínez-Molina E (2010) The genus Micromonospora is widespread in legume root nodules: the example of Lupinus angustifolius. ISME J 4:1265–1281CrossRef PubMed
    Tye DRC, Drake DC (2012) An exotic Australian Acacia fixes more N than a coexisting indigenous Acacia in South African riparian zone. Plant Ecol 213:251–257CrossRef
    Velázquez E, Martínez-Hidalgo P, Carro L, Alonso P, Peix Á, Trujillo M, Martínez-Molina E (2014) Nodular endophytes: an untapped diversity. In: González MBR, Gonzalez-López J (eds) Beneficial plant-microbial interactions: ecology and applications. CRC Press, Boca Raton, pp. 215–236
    Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Microbiol Biot 73:5261–5267
    Wolfe BE, Klironomos JN (2005) Breaking new ground: soil communities and exotic plant invasion. Bioscience 55:477–487CrossRef
    Yannarell AC, Busby RR, Denight ML, Gebhart DL, Taylor SJ (2011) Soil bacteria and fungi respond on different spatial scales to invasion by the legume Lespedeza cuneata. Front Microbiol 2:127. doi:10.​3389/​fmicb.​2011.​00127 CrossRef PubMed PubMedCentral
  • 作者单位:Ryan R. Busby (1)
    Giselle Rodriguez (1)
    Dick L. Gebhart (1)
    Anthony C. Yannarell (2)

    1. U.S. Army Engineer Research and Development Center, 2902 Newmark Drive, Champaign, IL, 61822, USA
    2. Department of Natural Resources and Environmental Sciences, University of Illinois, 1102 South Goodwin Avenue, Urbana, IL, 61801, USA
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Sciences
    Soil Science and Conservation
    Plant Physiology
    Ecology
  • 出版者:Springer Netherlands
  • ISSN:1573-5036
文摘
Background and Aims Lespedeza cuneata is a non-native invasive legume that alters the soil bacterial community, associates promiscuously with rhizobia, and benefits more from rhizobial interactions compared to coexisting native Lespedeza in North America. We tested the hypothesis that native congeners differ in their nodule bacteria associations compared to L. cuneata.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700