On the development of intrinsically-actuated, multisensory dexterous robotic hands
详细信息    查看全文
  • 作者:Hong Liu ; Dapeng Yang ; Shaowei Fan ; Hegao Cai
  • 关键词:Robotic hand ; Prosthetic hand ; Intrinsic actuation ; Modular design
  • 刊名:ROBOMECH Journal
  • 出版年:2016
  • 出版时间:December 2016
  • 年:2016
  • 卷:3
  • 期:1
  • 全文大小:1,034 KB
  • 参考文献:1.Pons JL, Ceres R, Pfeiffer F (1999) Multifingered dextrous robotics hand design and control: a review. Robotica 17(6):661–674CrossRef
    2.Bicchi A (2000) Hands for dexterous manipulation and robust grasping: a difficult road toward simplicity. IEEE Trans Robot Autom 16(6):652–662CrossRef
    3.Atkins DJ, Heard DC, Donovan WH (1996) Epidemiologic overview of individuals with upper-limb loss and their reported research priorities. J Prosthet Orthot 8(1):2–11CrossRef
    4.Peerdeman B, Boere D, Witteveen H, in’t Veld RH, Hermens H, Stramigioli S, Rietman H, Veltink P, Misra S (2011) Myoelectric forearm prostheses: state of the art from a user-centered perspective. J Rehabil Res Dev 48(6):719–737CrossRef
    5.Liu H, Yang DP, Jiang L, Fan SW (2014) Development of a multi-DOF prosthetic hand with intrinsic actuation, intuitive control and sensory feedback. Ind Robot Int J 41(4):381–392CrossRef
    6.Okada T (1979) Object-handling system for manual industry. IEEE Trans Syst Man Cybern 9(2):79–89CrossRef
    7.Namiki A, Imai Y, Kaneko M, Ishikawa M (2004) Development of a high-speed Multifingered Hand System. In: Proceedings of the international conference on intelligent manipulation and grasping, Genova, pp 85–90
    8.Hoshino K, Kawabuchi I (2005) Pinching with finger tips in humanoid robot hand. In: Proceedings, 12th international conference on Advanced robotics ICAR, IEEE, 2005, pp 705–712
    9.Yamano I, Maeno T (2005) Five-fingered robot hand using ultrasonic motors and elastic elements. In: Proceedings of the 2005 IEEE international conference on robotics and automation ICRA, IEEE, pp 2673–2678
    10.Hirzinger G, Fischer M, Brunner B, Koeppe R, Otter M, Grebenstein M, Schäfer I (1999) Advances in robotics: the DLR experience. Int J Robot Res 18(11):1064–1087CrossRef
    11.Butterfaß J, Grebenstein M, Liu H, Hirzinger G (2001) DLR-Hand II: Next generation of a dextrous robot hand. In: Proceedings 2001 IEEE international conference on robotics and automation ICRA. IEEE, pp 109–114
    12.Chalon M, Wedler A, Baumann A, Bertleff W, Beyer A, Butterfaß J, Grebenstein M, Gruber R, Hacker F, Kraemer E Dexhand (2011) A Space qualified multi-fingered robotic hand. In: IEEE international conference on robotics and automation ICRA, IEEE, pp 2204–2210
    13.Grebenstein M, Albu-Schäffer A, Bahls T, Chalon M, Eiberger O, Friedl W, Gruber R, Haddadin S, Hagn U, Haslinger R The DLR hand arm system (2011) In: IEEE international conference on robotics and automation ICRA, IEEE, pp 3175–3182
    14.Melchiorri C, Vassura G (1994) Implementation of whole-hand manipulation capability in the UB hand system design. Adv Robot 9(5):547–560CrossRef
    15.Lotti F, Tiezzi P, Vassura G, Biagiotti L, Palli G, Melchiorri C (2005) Development of UB hand 3: early results. In: Proceedings of the 2005 IEEE international conference on robotics and automation ICRA, IEEE, pp 4488–4493
    16.Caffaz A, Cannata G (1998) The design and development of the DIST-Hand dextrous gripper. In: Proceedings. 1998 IEEE international conference on robotics and automation, IEEE, 1998, pp 2075–2080
    17.Controzzi M, Cipriani C, Jehenne B, Donati M, Carrozza MC (2010) Bio-inspired mechanical design of a tendon-driven dexterous prosthetic hand. In:2010 annual international conference of the IEEE on engineering in medicine and biology society (EMBC), IEEE, pp 499–502
    18.Schmitz A, Pattacini U, Nori F, Natale L, Metta G, Sandini G (2010) Design, realization and sensorization of the dexterous iCub hand. In: 2010 10th IEEE-RAS international conference on humanoid robots (humanoids), IEEE, pp 186–191
    19.Shadow Dexterous Hand™—Now available for purchase! http://​www.​shadowrobot.​com/​products/​dexterous-hand/​ Accessed 01.08.2016
    20.Mason MT, Salisbury JK Jr (1985) Robot hands and the mechanics of manipulation. The MIT Press, Cambridge, pp 3–93
    21.Jacobsen SC, Wood JE, Knutti D, Biggers KB (1984) The UTAH/MIT dextrous hand: work in progress. Int J Robot Res 3(4):21–50CrossRef
    22.Lovchik C, Diftler MA (1999) The robonaut hand: A dexterous robot hand for space. In: Proceedings. 1999 IEEE international conference on robotics and automation, IEEE, pp 907–912
    23.Bridgwater LB, Ihrke C, Diftler MA, Abdallah ME, Radford NA, Rogers J, Yayathi S, Askew RS, Linn DM (2012) The robonaut 2 hand-designed to do work with tools. In: 2012 IEEE international conference on robotics and automation (ICRA), IEEE, pp 3425–3430
    24.Mitchell M, Weir RF (2008) Development of a clinically viable multifunctional hand prosthesis. Proceedings of the 2008 myoelectric controls/powered prosthetics symposium, Fredericton. IEEE, New Brunswick, pp 45–49
    25.Weir R, Mitchell M, Clark S, Puchhammer G, Haslinger M, Grausenburger R, Kumar N, Hofbauer R, Kushnigg P, Cornelius V (2008) The intrinsic hand–a 22 degree-of-freedom artificial hand-wrist replacement. Proceedings of myoelectric controls powered prosthetics symposium, IEEE, New Brunswick, 233–237
    26.Kawasaki H, Komatsu T, Uchiyama K (2002) Dexterous anthropomorphic robot hand with distributed tactile sensor: gifu hand II. IEEE/AMSE Trans Mechatron 7(3):296–303CrossRef
    27.Mouri T, Kawasaki H, Yoshikawa K, Takai J, Ito S (2002) Anthropomorphic robot hand: Gifu hand III. Proceedings of the 2002 IEEE international conference on autonomic and autonomous systems, Jeonbuk. Korea, IEEE, pp 1288–1293
    28.Ueda J, Kondo M, Ogasawara T (2010) The multifingered NAIST hand system for robot in-hand manipulation. Mech Mach Theory 45(2):224–238CrossRef MATH
    29.Kurita Y, Ono Y, Ikeda A, Ogasawara T (2011) Human-sized anthropomorphic robot hand with detachable mechanism at the wrist. Mech Mach Theory 46(1):53–66CrossRef MATH
    30.Iwata H, Sugano S (2009) Design of anthropomorphic dexterous hand with passive joints and sensitive soft skins. In: SII 2009. IEEE/SICE International Symposium on System Integration, IEEE, pp 129–134
    31.Kim E-H, Lee S-W, Lee Y-K (2011) A dexterous robot hand with a bio-mimetic mechanism. Int J Precis Eng Manufactur 12(2):227–235CrossRef
    32.Wang ZH, Zhang LB, Gzj Bao, Qian SM, Yang QH (2011) Design and control of integrated pneumatic dexterous robot finger. J Central South Univ Technol 18:1105–1114CrossRef
    33.Schäffer A, Eiberger O, Grebenstein M, Haddadin S, Ott C, Wimböck T, Wolf S, Hirzinger G (2008) Soft robotics, from torque feedback-controlled lightweight robots to intrinsically compliant systems. IEEE Robot Autom Mag 15(3):20–30CrossRef
    34.Kyberd PJ, Chappell PH (1994) The southampton hand: an intelligent myoelectric prosthesis. J Rehabil Res Dev 31(4):326–334
    35.Kyberd PJ, Evans MJ, Winkel S (1998) An intelligent anthropomorphic hand with automatic grasp. Robotica 16:531–536CrossRef
    36.Dashy R, Yen C, Leblanc M (1998) The design and development of a gloveless endoskeleton prosthetic hand. J Rehabil Res Dev 35(4):388–395
    37.Huang HP, Chen CY (1999) Development of a myoelectric discrimination system for a multi-degree prosthetic hand. Proceedings of the 1999 IEEE international conference on robotics and automation, detroit. Michigan, IEEE, pp 2392–2397
    38.Carrozza MC, Cappiello G, Micera S, Edin BB, Beccai L, Cipriani C (2006) Design of a cybernetic hand for perception and action. Biol Cybern 95:629–644CrossRef MATH
    39.Pons JL, Rocon E, Ceres R (2004) The MANUS-HAND dextrous robotics upper limb prosthesis: mechanical and manipulation aspects. Autonomous Robots 16:143–163CrossRef
    40.Yang J, Pitarch EP, Abdel-Malek K, Patrick A, Lindkvist L (2004) A multi-fingered hand prosthesis. Mech Mach Theory 39(6):555–581CrossRef MATH
    41.Kargov A, Werner T, Pylatiuk C, Schulz S (2008) Development of a miniaturised hydraulic actuation system for artificial hands. Sens Actuators, A 141(2):548–557CrossRef
    42.Arieta AH, Katoh R, Yokoi H, Wenwei Y (2006) Development of a multi-DOF electromyography prosthetic system using the adaptive joint mechanism. Appl Bion Biomech 3(2):101–111CrossRef
    43.Andrianesis K, Tzes A (2008) Design of an anthropomorphic prosthetic hand driven by shape memory alloy actuators. In: Proceedings of the 2nd Biennial IEEE/RAS-EMBS international conference on biomedical robotics and biomechatronics, biorob, pp 517–522
    44.Jung SY, Moon I (2008) Grip force modeling of a tendon-driven prosthetic hand. In: 2008 international conference on control, automation and systems, ICCAS, Seoul, pp 2006–2009
    45.Fite KB, Withrow TJ, Shen X, Wait KW, Mitchell JE, Goldfarb M (2008) A gas-actuated anthropomorphic prosthesis for transhumeral amputees. IEEE Trans Rob 24(1):159–169CrossRef
    46.Weir R, Mitchell M, Clark S, Puchhammer G, Haslinger M, Grausenburger R, Kumar N, Hofbauer R, Kushnigg P, Cornelius V (2008) The intrinsic hand–a 22 degree-of-freedom artificial hand-wrist replacement. In: Proceedings of myoelectric controls/powered prosthetics symposium, New Brunswick, pp 233–237
    47.Mitchell M, Weir R F (2008) Development of a clinically viable multifunctional hand prosthesis. In Proceedings of the 2008 myoelectric controls powered prosthetics symposium Fredericton, IEEE, New Brunswick, p 45–49
    48.Dalley SA, Wiste TE, Withrow TJ, Goldfarb M (2009) Design of a multifunctional anthropomorphic prosthetic hand with extrinsic actuation. Mechatron, IEEE/ASME Trans 14(6):699–706CrossRef
    49.Kinea Design LLC. (2011). http://​www.​kineadesign.​com . Accessed 08 Apr 2011
    50.Liu H, Meusel P, Hirzinger G, Jin M, Liu Y, Xie Z (2008) The modular multisensory DLR-HIT-Hand: hardware and software architecture. IEEE/ASME Trans Mechatron 13(4):461–469CrossRef
    51.Liu H, Wu K, Meusel P, Seitz N, Hirzinger G, Jin M, Liu Y, Fan S, Lan T, Chen Z (2008) Multisensory five-finger dexterous hand: The DLR/HIT Hand II. In: IEEE/RSJ international conference on intelligent robots and systems IROS, IEEE, pp 3692–3697
    52.Dechev N, Cleghorn W, Naumann S (2001) Multiple finger, passive adaptive grasp prosthetic hand. Mech Mach Theory 36(10):1157–1173CrossRef MATH
    53.Laliberté T, Birglen L, Gosselin C (2002) Underactuation in robotic grasping hands. Machine Intell Robot Control 4(3):1–11
    54.Yang D, Zhao J-d Gu, Y-k Wang X-q, Li N, Liu H, Jiang L, Huang H, D-w Zhao (2009) An anthropomorphic robot hand developed based on underactuated mechanism and controlled by emg signals. J Bionic Eng 6(3):255–263CrossRef
    55.Jiang L, Zeng B, Fan S, Sun K, Zhang T, Liu H A (2014) modular multisensory prosthetic hand. In: 2014 IEEE international conference on information and automation (ICIA), IEEE, pp 648–653
    56.Zhang T, Liu H, Jiang L, Fan S, Yang J (2013) Development of a flexible 3-d tactile sensor system for anthropomorphic artificial hand. IEEE Sens J 2:510–518CrossRef
    57.Hioki M, Ebisawa S, Sakaeda H, Mouri T, Nakagawa S, Uchida Y, Kawasaki H (2011) Design and control of electromyogram prosthetic hand with high grasping force. In: 2011 IEEE international conference on robotics and biomimetics (ROBIO), IEEE, pp 1128–1133
    58.Santos VJ, Valero-Cuevas FJ (2006) Reported anatomical variability naturally leads to multimodal distributions of Denavit-Hartenberg parameters for the human thumb. Biomed Eng, IEEE Trans 53(2):155–163CrossRef
    59.Rezzoug N, Gorce P (2008) Prediction of fingers posture using artificial neural networks. J Biomech 41(12):2743–2749CrossRef
    60.Hou M, Jiang L, Jin M, Liu H, Chen Z (2014) Analysis of the multi-finger dynamics for robot hand system based on EtherCAT. In: 2014 10th international conference on natural computation (ICNC), IEEE, pp 1061–1065
    61.Hou M, Jiang L, Jin M, Liu H, Chen Z (2014) Strategies to optimize fingertip force for impedance control of robot hand based on EtherCAT. In: Proceedings of the 2014 Asia-Pacific conference on computer science and applications (CSAC 2014) computer science and applications, CRC Press, Shanghai, p 245
    62.Antfolk C, Balkenius C, Rosen B, Lundborg G, Sebelius F (2010) SmartHand tactile display: a new concept for providing sensory feedback in hand prostheses. Scand J Plast Reconstr Surg Hand Surg 44(1):50–53CrossRef
    63.Raspopovic S, Capogrosso M, Petrini FM, Bonizzato M, Rigosa J, Di Pino G, Carpaneto J, Controzzi M, Boretius T, Fernandez E (2014) Restoring natural sensory feedback in real-time bidirectional hand prostheses. Sci transl med 6(222):222ra219CrossRef
    64.Fang Y, Hettiarachchi N, Zhou D, Liu H (2015) Multi-modal sensing techniques for interfacing hand prostheses: a review. Sensors J IEEE 15(11):6065–6076CrossRef
    65.Castellini C, Artemiadis P, Wininger M, Ajoudani A, Alimusaj M, Bicchi A, Caputo B, Craelius W, Dosen S, Englehart K, Farina D, Gijsberts A, Godfrey SB, Hargrove L, Ison M, Kuiken T, Markovic M, Pilarski P, Rupp R, Scheme E (2014) Proceedings of the first workshop on peripheral machine interfaces: going beyond traditional surface electromyography. Front Neurorobotics 8 22:21. doi:10.​3389/​fnbot.​2014.​00022
    66.Ning J, Dosen S, Muller KR, Farina D (2012) Myoelectric control of artificial limbs: is there a need to change focus? IEEE Signal Process Mag 29(5):148–152
    67.Ravindra V, Castellini C (2014) A comparative analysis of three non-invasive human-machine interfaces for the disabled. Front neurorobotics 8:24. doi:10.​3389/​fnbot.​2014.​00024 CrossRef
    68.Chen X, Zheng YP, Guo JY, Shi J (2010) Sonomyography (SMG) control for powered prosthetic hand: a study with normal subjects. Ultrasound Med Biol 36(7):1076–1088CrossRef
    69.Siesler HW, Ozaki Y, Kawata S, Heise HM (2008) Near-infrared spectroscopy: principles, instruments, applications. Wiley, New York
    70.Fifer MS, Acharya S, Benz HL, Mollazadeh M, Crone NE, Thakor NV (2012) Towards electrocorticographic control of a dexterous upper limb prosthesis. IEEE PULSE 3(1):38–42CrossRef
    71.McMullen DP, Hotson G, Katyal KD, Wester BA, Fifer MS, McGee TG, Harris A, Johannes MS, Vogelstein RJ, Ravitz AD, Anderson WS, Thakor NV, Crone NE (2014) Demonstration of a semi-autonomous hybrid brain-machine interface using human intracranial eeg, eye tracking, and computer vision to control a robotic upper limb prosthetic. Neural Syst Rehabil Eng, IEEE Trans 22(4):784–796. doi:10.​1109/​TNSRE.​2013.​2294685
    72.Markovic M, Dosen S, Cipriani C, Popovic D, Farina D (2014) Stereovision and augmented reality for closed-loop control of grasping in hand prostheses. J Neural Eng 11(4):046001CrossRef
    73.Markovic M, Dosen S, Popovic D, Graimann B, Farina D (2015) Sensor fusion and computer vision for context-aware control of a multi degree-of-freedom prosthesis. J Neural Eng 12(6):066022CrossRef
    74.Riso RR (1999) Strategies for providing upper extremity amputees with tactile and hand position feedback–moving closer to the bionic arm. Technol Health Care 7(6):401–409
    75.Kyberd PJ, Mustapha N, Carnegie F, Chappell PH (1993) A clinical experience with a hierarchically controlled myoelectric hand prosthesis with vibro-tactile feedback. Prosthet Orthot Int 17(1):56–64CrossRef
  • 作者单位:Hong Liu (1)
    Dapeng Yang (1)
    Shaowei Fan (1)
    Hegao Cai (1)

    1. State Key Laboratory of Robotics and System, Harbin Institute of Technology, HIT Science Park, No.2 Yikuang Street, Nangang District, P.O. Box 3039, 150080, Harbin, People’s Republic of China
  • 刊物类别:Robotics and Automation; Mechatronics; Artificial Intelligence (incl. Robotics); Control; Computatio
  • 刊物主题:Robotics and Automation; Mechatronics; Artificial Intelligence (incl. Robotics); Control; Computational Intelligence;
  • 出版者:Springer International Publishing
  • ISSN:2197-4225
文摘
Restoring human hand function by mechatronic means is very challenging in robotics research. In this paper, we first make a brief review on the development of dexterous robotic/prosthetic hands, and then detail our design philosophy of several robot hands. We make a concentration on a type of intrinsically-actuated robot hands, wherein the driving, transmission, and control elements are totally embedded in the hand. According to different application scenarios, we develop robot hands in two parallel lines, dexterous robotic hand and anthropomorphic prosthetic hand. In both, the hand’s actuation, sensing, and control subsystems are highly integrated and modularized. This feature endows our robot hands with compact appearances, simple integration, and large flexibilities. At last, we give some perspectives on the future development of dexterous hands from the aspects of structure, functionality, and control strategies. Keywords Robotic hand Prosthetic hand Intrinsic actuation Modular design

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700