Synergic antitumor effect of SKLB1002 and local hyperthermia in 4T1 and CT26
详细信息    查看全文
  • 作者:Wen Nie (1)
    Xue-lei Ma (1)
    Ya-xiong Sang (1)
    Yu-li Li (1)
    Xiang Gao (1)
    Guang-chao Xu (1)
    Guo-bo Shen (1)
    Hua-shan Shi (1)
    Xiao-xiao Liu (1)
    Feng-tian Wang (1)
    Yu-quan Wei (1)
  • 关键词:VEGFR2 ; inhibited compound SKLB1002 ; Hyperthermia ; Antiangiogenesis ; Antitumor ; Inhibition of tumor metastasis
  • 刊名:Clinical and Experimental Medicine
  • 出版年:2014
  • 出版时间:May 2014
  • 年:2014
  • 卷:14
  • 期:2
  • 页码:203-213
  • 全文大小:
  • 参考文献:1. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407(6801):249-57
    2. Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1(1):27-1 CrossRef
    3. Folkman J (2002) Role of angiogenesis in tumor growth and metastasis. Semin Oncol 29(6 Suppl 16):15-8 CrossRef
    4. Rouhi P, Lee SL, Cao Z, Hedlund EM, Jensen LD, Cao Y (2010) Pathological angiogenesis facilitates tumor cell dissemination and metastasis. Cell cycle (Georgetown, Tex) 9(5):913-17 CrossRef
    5. Bergers G, Benjamin LE (2003) Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3(6):401-10 CrossRef
    6. Cao Y (2009) Tumor angiogenesis and molecular targets for therapy. Front Biosci J Virtual Libr 14:3962-973 CrossRef
    7. Pantel K, Brakenhoff RH (2004) Dissecting the metastatic cascade. Nat Rev Cancer 4(6):448-56 CrossRef
    8. Ma J, Chen CS, Blute T, Waxman DJ (2011) Antiangiogenesis enhances intratumoral drug retention. Cancer Res 71(7):2675-685 CrossRef
    9. Carmeliet P (2005) VEGF as a key mediator of angiogenesis in cancer. Oncology 69(Suppl 3):4-0 CrossRef
    10. Castilla MA, Neria F, Renedo G, Pereira DS, Gonzalez-Pacheco FR, Jimenez S, Tramon P, Deudero JJ, Arroyo MV, Yague S, Caramelo C (2004) Tumor-induced endothelial cell activation: role of vascular endothelial growth factor. Am J Physiol Cell Physiol 286(5):C1170–C1176 CrossRef
    11. Lu D, Jimenez X, Zhang H, Bohlen P, Witte L, Zhu Z (2002) Selection of high affinity human neutralizing antibodies to VEGFR2 from a large antibody phage display library for antiangiogenesis therapy. Int J Cancer 97(3):393-99 CrossRef
    12. Ferrara N (2005) VEGF as a therapeutic target in cancer. Oncology 69(Suppl 3):11-6 CrossRef
    13. Byzova TV, Goldman CK, Pampori N, Thomas KA, Bett A, Shattil SJ, Plow EF (2000) A mechanism for modulation of cellular responses to VEGF: activation of the integrins. Mol Cell 6(4):851-60
    14. Shalaby F, Ho J, Stanford WL, Fischer KD, Schuh AC, Schwartz L, Bernstein A, Rossant J (1997) A requirement for Flk1 in primitive and definitive hematopoiesis and vasculogenesis. Cell 89(6):981-90 CrossRef
    15. Shibuya M (2011) Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: a crucial target for anti- and pro-angiogenic therapies. Genes cancer 2(12):1097-105 CrossRef
    16. Sawamiphak S, Seidel S, Essmann CL, Wilkinson GA, Pitulescu ME, Acker T, Acker-Palmer A (2010) Ephrin-B2 regulates VEGFR2 function in developmental and tumour angiogenesis. Nature 465(7297):487-91 CrossRef
    17. Li WW, Chen JJ, Zheng RL, Zhang WQ, Cao ZX, Yang LL, Qing XY, Zhou LX, Yang L, Yu LD, Chen LJ, Wei YQ, Yang SY (2010) Taking quinazoline as a general support-Nog to design potent and selective kinase inhibitors: application to FMS-like tyrosine kinase 3. ChemMedChem 5(4):513-16 CrossRef
    18. Shen G, Li Y, Du T, Shi G, Dai L, Chen X, Zheng R, Li W, Su X, Zhang S, Wei Y, Yang S, Deng H (2012) SKLB1002, anovel inhibitor of VEGF receptor 2 signaling, induces vascular normalization to improve systemically administered chemotherapy efficacy. Neoplasma 59(5):486-93. doi:10.4149/neo_2012_062 CrossRef
    19. Zhang S, Cao Z, Tian H, Shen G, Ma Y, Xie H, Liu Y, Zhao C, Deng S, Yang Y, Zheng R, Li W, Zhang N, Liu S, Wang W, Dai L, Shi S, Cheng L, Pan Y, Feng S, Zhao X, Deng H, Yang S, Wei Y (2011) SKLB1002, a novel potent inhibitor of VEGF receptor 2 signaling, inhibits angiogenesis and tumor growth in vivo. Clin Cancer Res 17(13):4439-450 CrossRef
    20. Huber PE, Bischof M, Jenne J, Heiland S, Peschke P, Saffrich R, Grone HJ, Debus J, Lipson KE, Abdollahi A (2005) Trimodal cancer treatment: beneficial effects of combined antiangiogenesis, radiation, and chemotherapy. Cancer Res 65(9):3643-655 CrossRef
    21. Ma J, Waxman DJ (2008) Combination of antiangiogenesis with chemotherapy for more effective cancer treatment. Mol Cancer Ther 7(12):3670-684 CrossRef
    22. Chen P, Yang LL, Yang HS, Wang YS, Li G, Wu Y, Fang F, Liu K, Li J, Zhao X, Hu HZ, Wei YQ (2008) Synergistic antitumor effect of CXCL10 with hyperthermia. J Cancer Res Clin Oncol 134(6):679-87 CrossRef
    23. Kanaya Y, Doihara H, Shiroma K, Ogasawara Y, Date H (2008) Effect of combined therapy with the antiestrogen agent toremifene and local hyperthermia on breast cancer cells implanted in nude mice. Surg Today 38(10):911-20 CrossRef
    24. Roca C, Primo L, Valdembri D, Cividalli A, Declerck P, Carmeliet P, Gabriele P, Bussolino F (2003) Hyperthermia inhibits angiogenesis by a plasminogen activator inhibitor 1-dependent mechanism. Cancer Res 63(7):1500-507
    25. Sawaji Y, Sato T, Takeuchi A, Hirata M, Ito A (2002) Anti-angiogenic action of hyperthermia by suppressing gene expression and production of tumour-derived vascular endothelial growth factor in vivo and in vitro. Br J Cancer 86(10):1597-603 CrossRef
    26. Zhang HG, Mehta K, Cohen P, Guha C (2008) Hyperthermia on immune regulation: a temperature’s story. Cancer Lett 271(2):191-04 CrossRef
    27. Wei YQ, Wang QR, Zhao X, Yang L, Tian L, Lu Y, Kang B, Lu CJ, Huang MJ, Lou YY, Xiao F, He QM, Shu JM, Xie XJ, Mao YQ, Lei S, Luo F, Zhou LQ, Liu CE, Zhou H, Jiang Y, Peng F, Yuan LP, Li Q, Wu Y, Liu JY (2000) Immunotherapy of tumors with xenogeneic endothelial cells as a vaccine. Nat Med 6(10):1160-166 CrossRef
    28. Huang X, Wong MK, Yi H, Watkins S, Laird AD, Wolf SF, Gorelik E (2002) Combined therapy of local and metastatic 4T1 breast tumor in mice using SU6668, an inhibitor of angiogenic receptor tyrosine kinases, and the immunostimulator B7.2-IgG fusion protein. Cancer Res 62(20):5727-735
    29. Li G, Tian L, Hou JM, Ding ZY, He QM, Feng P, Wen YJ, Xiao F, Yao B, Zhang R, Peng F, Jiang Y, Luo F, Zhao X, Zhang L, Zhou Q, Wei YQ (2005) Improved therapeutic effectiveness by combining recombinant CXC chemokine ligand 10 with Cisplatin in solid tumors. Clin Cancer Res 11(11):4217-224 CrossRef
    30. Papetti M, Herman IM (2002) Mechanisms of normal and tumor-derived angiogenesis. Am J Physiol Cell Physiol 282(5):C947–C970 CrossRef
    31. Yang JC, Haworth L, Sherry RM, Hwu P, Schwartzentruber DJ, Topalian SL, Steinberg SM, Chen HX, Rosenberg SA (2003) A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N Enql J Med 349(5):427-34
    32. Pajonk F, van Ophoven A, McBride WH (2005) Hyperthermia-induced proteasome inhibition and loss of androgen receptor expression in human prostate cancer cells. Cancer Res 65(11):4836-843 CrossRef
    33. Franchi F, Grassi P, Ferro D, Pigliucci G, De Chicchis M, Castigliani G, Pastore C, Seminara P (2007) Antiangiogenic metronomic chemotherapy and hyperthermia in the palliation of advanced cancer. Eur J Cancer Care 16(3):258-62 CrossRef
    34. Griffin RJ, Williams BW, Koonce NA, Bischof JC, Song CW, Asur R, Upreti M (2012) Vascular disrupting agent arsenic trioxide enhances thermoradiotherapy of solid tumors. J Oncol 2012:934918. doi:10.1155/2012/934918 CrossRef
    35. Bischof M, Abdollahi A, Gong P, Stoffregen C, Lipson KE, Debus JU, Weber KJ, Huber PE (2004) Triple combination of irradiation, chemotherapy (pemetrexed), and VEGFR inhibition (SU5416) in human endothelial and tumor cells. Int J Radiat Oncol Biol Phys 60(4):1220-232 CrossRef
    36. Bai RZ, Wu Y, Liu Q, Xie K, Wei YQ, Wang YS, Liu K, Luo Y, Su JM, Hu B, Liu JY, Li Q, Niu T, Zhao ZW, Yang L (2009) Suppression of lung cancer in murine model: treated by combination of recombinant human endostsatin adenovirus with low-dose cisplatin. J Exp Clin Cancer Res CR 28:31 CrossRef
    37. Huang Q, Hu JK, Lohr F, Zhang L, Braun R, Lanzen J, Little JB, Dewhirst MW, Li CY (2000) Heat-induced gene expression as a novel targeted cancer gene therapy strategy. Cancer Res 60(13):3435-439
    38. Krawczyk PM, Eppink B, Essers J, Stap J, Rodermond H, Odijk H, Zelensky A, van Bree C, Stalpers LJ, Buist MR, Soullie T, Rens J, Verhagen HJ, O’Connor MJ, Franken NA, Ten Hagen TL, Kanaar R, Aten JA (2011) Mild hyperthermia inhibits homologous recombination, induces BRCA2 degradation, and sensitizes cancer cells to poly (ADP-ribose) polymerase-1 inhibition. Proc Natl Acad Sci 108:9851-856
    39. Stankiewicz AR, Livingstone AM, Mohseni N, Mosser DD (2009) Regulation of heat-induced apoptosis by Mcl-1 degradation and its inhibition by Hsp70. Cell Death Differ 16(4):638-47
  • 作者单位:Wen Nie (1)
    Xue-lei Ma (1)
    Ya-xiong Sang (1)
    Yu-li Li (1)
    Xiang Gao (1)
    Guang-chao Xu (1)
    Guo-bo Shen (1)
    Hua-shan Shi (1)
    Xiao-xiao Liu (1)
    Feng-tian Wang (1)
    Yu-quan Wei (1)

    1. Department of Medical Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, No. 37 Guoxuexiang Street, Chengdu, 610041, People’s Republic of China
  • ISSN:1591-9528
文摘
A de novo VEGFR2-inhibited compound SKLB1002 which is independently developed in our laboratory has been described for antiangiogenesis and displays a potent antitumor activity in vivo and in vitro. In the present investigation, we aim to prove that combination therapy of SKLB1002 with hyperthermia plays a synergy as an antitumor agent in solid tumor. In this study, we analyzed their synergetic inhibitory action on human umbilical vein endothelial cells (HUVEC), murine mammary cancer 4T1, murine colon carcinoma CT26 in vitro. Multiply-table tournament was performed to detect cell proliferation in vitro. 4T1 implantation and CT26 implantation in BALB/c mice were used to examine the activity of combination therapy of SKLB1002 with hyperthermia in vivo. Vascular density was determined by CD31 immunohistochemistry. TUNEL was used to measure apoptosis in tumor tissue. Metastasis assay was investigated via measurement of pulmonary metastasis nodules under the microscope. Potential toxicity of combination therapy was observed by histologic analysis of main organs stained with H&E. In vitro, the combination therapy significantly inhibited cell proliferation of HUVEC, 4T1 and CT26. In vivo, 4T1 and CT26 model experiments showed that combination therapy remarkably inhibited tumor growth and prolonged life span. When compared with controls, combination therapy reached 61?% inhibition index of tumor growth against CT26 and 51?% against 4T1. Moreover, it reduced angiogenesis and increased tumor apoptosis and necrosis. It was further found that combination therapy could efficiently prevent tumor from metastasizing to lung. Importantly, it had no toxicity to main organs including heart, liver, spleen, lung and kidney. Combination treatment has been proved to be a novel and strong strategy in clinical antitumor therapy. Our findings suggest that the combination therapy of SKLB1002 with hyperthermia has a synergistic antiangiogenesis, anticancer and promotion of apoptosis efficacy compared with controls. These findings could pave a new way in clinical tumor therapy.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700