Rational modification of a dendrimeric peptide with antimicrobial activity: consequences on membrane-binding and biological properties
详细信息    查看全文
  • 作者:Giovanna Batoni ; Mariano Casu ; Andrea Giuliani ; Vincenzo Luca…
  • 关键词:Antimicrobial peptides ; Dendrimers ; Biofilms ; Gram ; negative ; Gram ; positive ; Model membranes
  • 刊名:Amino Acids
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:48
  • 期:3
  • 页码:887-900
  • 全文大小:1,851 KB
  • 参考文献:Batoni G, Maisetta G, Brancatisano FL, Esin S, Campa M (2011) Use of antimicrobial peptides against microbial biofilms: advantages and limits. Curr Med Chem 18:256–2579CrossRef PubMed
    Brancatisano FL, Maisetta G, Di Luca M, Esin S, Bottai D, Bizzarri R, Campa M, Batoni G (2014) Inhibitory effect of the human liver-derived antimicrobial peptide hepcidin 20 on biofilms of polysaccharide intercellular adhesin (PIA)-positive and PIA-negative strains of Staphylococcus epidermidis. Biofouling 30:435–446CrossRef PubMed
    Breukink E, Van Kraaij C, Demel RA, Siezen RJ, Kuipers OP, De Kruijff B (1997) The C-terminal region of nisin is responsible for the initial interaction of nisin with the target membrane. Biochemistry 36:6968–6976CrossRef PubMed
    Bruschi M, Pirri G, Giuliani A, Nicoletto SF, Baster I, Scorciapino MA, Casu M, Rinaldi AC (2010) Synthesis, characterization, antimicrobial activity and LPS-interaction properties of SB041, a novel dendrimeric peptide with antimicrobial properties. Peptides 31:1459–1467CrossRef PubMed
    Christiaens B, Symoens S, Vanderheyden S, Engelborghs Y, Joliot A, Prochiantz A, Vandekerckhove J, Rosseneu M, Vanloo B (2002) Tryptophan fluorescence study of the interaction of penetratin peptides with model membranes. Eur J Biochem 269:2918–2926CrossRef PubMed
    Coccia C, Rinaldi AC, Luca V, Barra D, Bozzi A, Di Giulio A, Veerman EC, Mangoni ML (2011) Membrane interaction and antibacterial properties of two mildly cationic peptide diastereomers, bombinins H2 and H4, isolated from Bombina skin. Eur Biophys J 40:577–588CrossRef PubMed
    Di Luca M, Maccari G, Maisetta G, Batoni G (2015) BaAMPs: the database of biofilm-active antimicrobial peptides. Biofouling 31:193–199CrossRef PubMed
    Diamond G, Beckloff N, Weinberg A, Kisich KO (2009) The roles of antimicrobial peptides in innate host defense. Curr Pharm Des 15:2377–2392PubMedCentral CrossRef PubMed
    Epand RM, Epand RF (2009) Domains in bacterial membranes and the action of antimicrobial agents. Mol BioSyst 5:580–587CrossRef PubMed
    Epand RF, Ramamoorthy A, Epand RM (2006) Membrane lipid composition and the interaction of pardaxin: the role of cholesterol. Protein Pept Lett 13:1–5PubMed
    Falciani C, Brunetti J, Pagliuca C, Menichetti S, Vitellozzi L, Lelli B, Pini A, Bracci L (2010) Design and in vitro evaluation of branched peptide conjugates: turning nonspecific cytotoxic drugs into tumor-selective agents. ChemMedChem 5:567–574CrossRef PubMed
    Falciani C, Lozzi L, Pollini S, Luca V, Carnicelli V, Brunetti J, Lelli B, Bindi S, Scali S, Di Giulio A, Rossolini GM, Mangoni ML, Bracci L, Pini A (2012) Isomerization of an antimicrobial peptide broadens antimicrobial spectrum to gram-positive bacterial pathogens. PLoS ONE 7:e46259PubMedCentral CrossRef PubMed
    Giuliani A, Rinaldi AC (2011) Beyond natural antimicrobial peptides: multimeric peptides and other peptidomimetic approaches. Cell Mol Life Sci 68:2255–2266CrossRef PubMed
    Giuliani A, Pirri G, Bozzi A, Di Giulio A, Aschi M, Rinaldi AC (2008) Antimicrobial peptides: natural templates for synthetic membrane-active compounds. Cell Mol Life Sci 65:2450–2460CrossRef PubMed
    Kyte J, Doolittle RF (1892) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132CrossRef
    Laxminarayan R, Duse A, Wattal C, Zaidi AK, Wertheim HF, Sumpradit N, Vlieghe E, Hara GL, Gould IM, Goossens H, Greko C, So AD, Bigdeli M, Tomson G, Woodhouse W, Ombaka E, Peralta AQ, Qamar FN, Mir F, Kariuki S, Bhutta ZA, Coates A, Bergstrom R, Wright GD, Brown ED, Cars O (2013) Antibiotic resistance-the need for global solutions. Lancet Infect Dis 13:1057–1098CrossRef PubMed
    Lind TK, Polcyn P, Zielinska P, Cárdenas M, Urbanczyk-Lipkowska Z (2015) On the antimicrobial activity of various peptide-based dendrimers of similar architecture. Molecules 20:738–753CrossRef PubMed
    Luca V, Stringaro A, Colone M, Pini A, Mangoni ML (2013) Esculentin(1-21), an amphibian skin membrane-active peptide with potent activity on both planktonic and biofilm cells of the bacterial pathogen Pseudomonas aeruginosa. Cell Mol Life Sci 70:2773–2786CrossRef PubMed
    Luganini A, Giuliani A, Pirri G, Pizzuto L, Landolfo S, Gribaudo G (2010) Peptide-derivatized dendrimers inhibit human cytomegalovirus infection by blocking virus binding to cell surface heparin sulfate. Antiviral Res 85:532–540CrossRef PubMed
    Mangoni ML, Fiocco D, Mignogna G, Barra D, Simmaco M (2003) Functional characterisation of the 1-18 fragment of esculentin-1b, an antimicrobial peptide from Rana esculenta. Peptides 24:1771–1777CrossRef PubMed
    Mangoni ML, Maisetta G, Di Luca M, Gaddi LM, Esin S, Florio W, Brancatisano FL, Barra D, Campa M, Batoni G (2008) Comparative analysis of the bactericidal activities of amphibian peptide analogues against multidrug-resistant nosocomial bacterial strains. Antimicrob Agents Chemother 52:85–91PubMedCentral CrossRef PubMed
    Manzo G, Scorciapino MA, Wadhwani P, Bürck J, Montaldo NP, Pintus M, Sanna R, Casu M, Giuliani A, Pirri G, Luca V, Ulrich AS, Rinaldi AC (2015) Enhanced amphiphilic profile of a short β-stranded peptide improves its antimicrobial activity. PLoS ONE 10:e0116379PubMedCentral CrossRef PubMed
    Marcellini L, Borro M, Gentile G, Rinaldi AC, Stella L, Aimola P, Barra D, Mangoni ML (2009) Esculentin-1b(1-18)–a membrane-active antimicrobial peptide that synergizes with antibiotics and modifies the expression level of a limited number of proteins in Escherichia coli. FEBS J 276:5647–5664CrossRef PubMed
    Opar A (2007) Bad drugs need more drugs. Nature Rev Drug Discov 6:943–944CrossRef
    Percival SL, Suleman L, Vuotto C, Donelli G (2015) Healthcare-associated infections, medical devices and biofilms: risk, tolerance and control. J Med Microbiol 64:323–334CrossRef PubMed
    Peschel A, Sahl HG (2006) The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat Rev Microbiol 4:529–536CrossRef PubMed
    Pini A, Giuliani A, Falciani C, Runci Y, Ricci C, Lelli B, Malossi M, Neri P, Rossolini GM, Bracci L (2005) Antimicrobial activity of novel dendrimeric peptides obtained by phage display selection and rational modification. Antimicrob Agents Chemother 7:2665–2672CrossRef
    Polcyn P, Zielinska P, Zimnicka M, Troć A, Kalicki P, Solecka J, Laskowska A, Urbanczyk-Lipkowska Z (2013) Novel antimicrobial peptide dendrimers with amphiphilic surface and their interactions with phospholipids—insights from mass spectrometry. Molecules 18:7120–7144CrossRef PubMed
    Rotem S, Mor A (2009) Antimicrobial peptide mimics for improved therapeutic properties. Biochim Biophys Acta 1788:1582–1592CrossRef PubMed
    Sadler K, Tam JP (2002) Peptide dendrimers: applications and synthesis. Rev Mol Biotechnol 90:195–229CrossRef
    Scorciapino MA, Rinaldi AC (2012) Antimicrobial peptidomimetics: reinterpreting nature to deliver innovative therapeutics. Front Immunol 3:1–4CrossRef
    Scorciapino MA, Pirri G, Vargiu AV, Ruggerone P, Giuliani A, Casu M, Bürck J, Wadhwani P, Ulrich AS, Rinaldi AC (2012) A novel dendrimeric peptide with antimicrobial properties: structure-function analysis of SB056. Biophys J 102:1039–1048PubMedCentral CrossRef PubMed
    Shai Y (2006) Mode of action of membrane active antimicrobial peptides. Biopolymers 66:236–248CrossRef
    Shaw N (1974) Lipid composition as a guide to the classification of bacteria. Adv Appl Microbiol 17:63–108CrossRef PubMed
    Stach M, Siriwardena TN, Köhler T, van Delden C, Darbre T, Reymond JL (2014) Combining topology and sequence design for the discovery of potent antimicrobial peptide dendrimers against multidrug-resistant Pseudomonas aeruginosa. Angew Chem Int Ed Engl 53:12827–12831CrossRef PubMed
    Tam JP, Lu YA, Yang JL (2002) Antimicrobial dendrimeric peptides. Eur J Biochem 269:923–932CrossRef PubMed
    Vega NM, Gore J (2014) Collective antibiotic resistance: mechanisms and implications. Curr Opin Microbiol 21:28–34PubMedCentral CrossRef PubMed
    Wilmes M, Sahl HG (2014) Defensin-based anti-infective strategies. Int J Med Microbiol 304:93–99CrossRef PubMed
    World Health Organization (2014) Antimicrobial resistance: global report on surveillance. WHO, Geneva. http://​apps.​who.​int/​iris/​bitstream/​10665/​112642/​1/​9789241564748_​eng.​pdf?​ua=​1 . Accessed 16 Aug 2015
    Yount NY, Yeaman MR (2013) Peptide antimicrobials: cell wall as a bacterial target. Ann N Y Acad Sci 1277:127–138CrossRef PubMed
    Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395CrossRef PubMed
    Zhao H, Kinnunen PK (2002) Binding of the antimicrobial peptide temporin L to liposomes assessed by Trp fluorescence. J Biol Chem 277:25170–25177CrossRef PubMed
  • 作者单位:Giovanna Batoni (1)
    Mariano Casu (2)
    Andrea Giuliani (3)
    Vincenzo Luca (4)
    Giuseppantonio Maisetta (1)
    Maria Luisa Mangoni (4)
    Giorgia Manzo (5)
    Manuela Pintus (5)
    Giovanna Pirri (3)
    Andrea C. Rinaldi (5)
    Mariano A. Scorciapino (5)
    Ilaria Serra (5)
    Anne S. Ulrich (6) (7)
    Parvesh Wadhwani (6)

    1. Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
    2. Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria, Monserrato (CA), Italy
    3. Research and Development Unit, Spider Biotech S.r.l., Colleretto Giacosa (TO), Italy
    4. Dipartimento di Scienze Biochimiche, “A. Rossi Fanelli”, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Rome, Italy
    5. Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, Monserrato (CA), Italy
    6. Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
    7. Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Biochemistry
    Analytical Chemistry
    Biochemical Engineering
    Life Sciences
    Proteomics
    Neurobiology
  • 出版者:Springer Wien
  • ISSN:1438-2199
文摘
Peptide-based antibiotics might help containing the rising tide of antimicrobial resistance. We developed SB056, a semi-synthetic peptide with a dimeric dendrimer scaffold, active against both Gram-negative and Gram-positive bacteria. Being the mechanism of SB056 attributed to disruption of bacterial membranes, we enhanced the amphiphilic profile of the original, empirically derived sequence [WKKIRVRLSA-NH2] by interchanging the first two residues [KWKIRVRLSA-NH2], and explored the effects of this modification on the interaction of peptide, both in linear and dimeric forms, with model membranes and on antimicrobial activity. Results obtained against Escherichia coli and Staphylococcus aureus planktonic strains, with or without salts at physiological concentrations, confirmed the added value of dendrimeric structure over the linear one, especially at physiological ionic strength, and the impact of the higher amphipathicity obtained through sequence modification on enhancing peptide performances. SB056 peptides also displayed intriguing antibiofilm properties. Staphylococcus epidermidis was the most susceptible strain in sessile form, notably to optimized linear analog lin-SB056-1 and the wild-type dendrimer den-SB056. Membrane affinity of all peptides increased with the percentage of negatively charged lipids and was less influenced by the presence of salt in the case of dendrimeric peptides. The analog lin-SB056-1 displayed the highest overall affinity, even for zwitterionic PC bilayers. Thus, in addition to electrostatics, distribution of charged/polar and hydrophobic residues along the sequence might have a significant role in driving peptide–lipid interaction. Supporting this view, dendrimeric analog den-SB056-1 retained greater membrane affinity in the presence of salt than den-SB056, despite the fact that they bear exactly the same net positive charge. Keywords Antimicrobial peptides Dendrimers Biofilms Gram-negative Gram-positive Model membranes

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700